Package ‘waveslim’

March 13, 2020

Version 1.8.2
Date 2020-02-13

Title Basic Wavelet Routines for One-, Two-, and Three-Dimensional
Signal Processing

Author Brandon Whitcher

Maintainer Brandon Whitcher <bwhitcher@gmail.com>
Depends R (>=2.11.0), graphics, grDevices, stats, utils
Suggests fftw, covr

Description Basic wavelet routines for time series (1D), image (2D)
and array (3D) analysis. The code provided here is based on
wavelet methodology developed in Percival and Walden (2000);
Gencay, Selcuk and Whitcher (2001); the dual-tree complex wavelet
transform (DTCWT) from Kingsbury (1999, 2001) as implemented by
Selesnick; and Hilbert wavelet pairs (Selesnick 2001, 2002). All
figures in chapters 4-7 of GSW (2001) are reproducible using this
package and R code available at the book website(s) below.

License BSD_3_clause + file LICENSE
URL http://waveslim.blogspot.com

biocViews

RoxygenNote 7.0.2

NeedsCompilation yes

Repository CRAN

Date/Publication 2020-03-13 10:20:02 UTC

R topics documented:

barbara e

http://waveslim.blogspot.com

R topics documented:

basis e 6
blocks e e 7
brickowall e e e 7
convolve2D L 8
CPL « o o e e e e 9
dau. . .. e 10
denoise.2d 10
doppler e e e 12
dpss.taper e e e e e 12
Dual-tree Filter Banks 14
dualfiltlo 16
Dualtree e e 17
Dualtree Complex 19
AWDPE . . L e 20
dwpt.2d . .o e 22
dwptboot 23
dWpt.sim. L 24
AWt . e 25
dwt2d . .. e 28
dwt.3d .. 29
exchange e 30
Farras e 30
fdpmle 31
find.adaptive.basis L 32
heavisine 33
Hilbert e 34
hilbert.filter e e e 35
hosking.sim 36
HWP Analysis o e 37
bm ... e 38
JAPAN . . L L e e 39
JUMPSINE . . . v v v st e e e e e e e e e e e e e e e e e e 39
kobe . . . e 40
linchirp e 40
MEXIML . . o vttt e e e e e e e e e e e e e e e 41
MOAWE o e e e e 41
modwt.2d e e e e e e 43
modwt.3d 45
50 45
mra.2d e e e e e e e e e e 47
mra.3d e e e e 49
multloc e 50
my.acf . . e e 51
nile e e e 52
ortho.basis 53
PET . o o e e e 54
phase.shift L 54

phase.shifthilbert L 55

Andel 3
plot.dwt2d e e e 56
amf . e 57
TOLCUMVAT v vt v e e e e e e e e e e e e e e e e e e e 58
Selesnick L e e 59
shift.2d e e 60
SINELAPET o o e e e 61
Spectral Density Functions L 62
SPIN.COVAIANCE . « . . v v v v e ettt e e e e e e e e e e 63
Spp-mle 65
SPP-VAL o v v v e e e e e e e e e e e e e e 66
squared.gain e e e 67
stackPlot e 68
testing.hov L L 69
Thresholding 70
tOUMISIM o ot e e e e e e e e 71
Unemploy e e 71
up.sample . ..o L 72
wavefilter L e 73
WAVE.VATIANCE o o o v e i e e e e e e e e e e e e e e 74
waveletfilter L 75
WPLEESE . . . o e e e e e e e 77
XDOX . . . e e e e 78

Index 79

Andel Autocovariance and Autocorrelation Sequences for a Seasonal Persis-
tent Process
Description

The autocovariance and autocorrelation sequences from the time series model in Figures 8, 9, 10,
and 11 of Andel (1986). They were obtained through numeric integration of the spectral density
function.

Usage

data(acvs.andel8)
data(acvs.andel9)
data(acvs.andell10)
data(acvs.andell1)

Format

A data frame with 4096 rows and three columns: lag, autocovariance sequence, autocorrelation
sequence.

4 Band-pass variance

References

Andel, J. (1986) Long memory time series models, Kypernetika, 22, No. 2, 105-123.

arl Simulated AR(1) Series

Description

Simulated AR(1) series used in Gencay, Selcuk and Whitcher (2001).

Usage

data(ar?l)

Format

A vector containing 200 observations.

References

Gencay, R., F. Selcuk and B. Whitcher (2001) An Introduction to Wavelets and Other Filtering
Methods in Finance and Economics, Academic Press.

Band-pass variance Bandpass Variance for Long-Memory Processes

Description

Computes the band-pass variance for fractional difference (FD) or seasonal persistent (SP) pro-
cesses using numeric integration of their spectral density function.

Usage

bandpass.fdp(a, b, d)

bandpass.spp(a, b, d, fG)

bandpass.spp2(a, b, d1, f1, d2, f2)
bandpass.var.spp(delta, fG, J, Basis, Length)

Arguments
a Left-hand boundary for the definite integral.
b Right-hand boundary for the definite integral.
d,delta,d1,d2 Fractional difference parameter.
fG,f1,f2 Gegenbauer frequency.
J Depth of the wavelet transform.
Basis Logical vector representing the adaptive basis.

Length Number of elements in Basis.

barbara 5

Details

See references.

Value

Band-pass variance for the FD or SP process between a and b.

Author(s)

Brandon Whitcher

References

McCoy, E. J., and A. T. Walden (1996) Wavelet analysis and synthesis of stationary long-memory
processes, Journal for Computational and Graphical Statistics, 5, No. 1, 26-56.

Whitcher, B. (2001) Simulating Gaussian stationary processes with unbounded spectra, Journal for
Computational and Graphical Statistics, 10, No. 1, 112-134.

barbara Barbara Test Image

Description

The Barbara image comes from Allen Gersho’s lab at the University of California, Santa Barbara.

Usage

data(barbara)

Format

A 256 x 256 matrix.

Source

Internet.

6 basis

basis Produce Boolean Vector from Wavelet Basis Names

Description

Produce a vector of zeros and ones from a vector of basis names.

Usage

basis(x, basis.names)

Arguments
X Output from the discrete wavelet package transfrom (DWPT).
basis.names Vector of character strings that describe leaves on the DWPT basis tree. See the
examples below for appropriate syntax.
Details
None.
Value

Vector of zeros and ones.

See Also
dwpt.

Examples

data(acvs.andel8)
Not run:
x <- hosking.sim(1024, acvs.andel8[,2])
x.dwpt <- dwpt(x, "la8", 7)
Select orthonormal basis from wavelet packet tree
x.basis <- basis(x.dwpt, c("wl.1","w2.1","w3.0","w4.3","w5.4","w6.10",
"w7.22","w7.23"))
for(i in 1:1length(x.dwpt))
x.dwpt[[i]] <- x.basis[i] * x.dwpt[[i]]
Resonstruct original series using selected orthonormal basis
y <- idwpt(x.dwpt, x.basis)
par(mfrow=c(2,1), mar=c(5-1,4,4-1,2))
plot.ts(x, xlab="", ylab="", main="Original Series")
plot.ts(y, xlab="", ylab="", main="Reconstructed Series")

End(Not run)

blocks 7

blocks A Piecewise-Constant Function

Description

11

blocks(x) = Z(l + sign(z — p;))h;/2

j=1

Usage
data(blocks)

Format

A vector containing 512 observations.

Source

S+WAVELETS.

References

Bruce, A., and H.-Y. Gao (1996) Applied Wavelet Analysis with S-PLUS, Springer: New York.

brick.wall Replace Boundary Wavelet Coefficients with Missing Values

Description

Sets the first n wavelet coefficients to NA.

Usage

brick.wall(x, wf, method="modwt")
dwpt.brick.wall(x, wf, n.levels, method="modwpt")

Arguments
X DWT/MODWT/DWPT/MODWPT object
wf Character string; name of wavelet filter
method Either dwt or modwt for brick.wall, or either dwpt or modwpt for dwpt.brick.wall

n.levels depth of the wavelet transform

8 convolve2D

Details

The fact that observed time series are finite causes boundary issues. One way to get around this is
to simply remove any wavelet coefficient computed involving the boundary. This is done here by
replacing boundary wavelet coefficients with NA.

Value

Same object as x only with some missing values.

Author(s)
B. Whitcher

References

Lindsay, R. W., D. B. Percival and D. A. Rothrock (1996). The discrete wavelet transform and the
scale anlaysis of the surface properties of sea ice, IEEE Transactions on Geoscience and Remote
Sensing, 34, No.~3, 771-787.

Percival, D. B. and A. T. Walden (2000) Wavelet Methods for Time Series Analysis, Cambridge
University Press.

convolve2D Fast Column-wise Convolution of a Matrix

Description

Use the Fast Fourier Transform to perform convolutions between a sequence and each column of a
matrix.

Usage

convolve2D(x, y, conj = TRUE, type = c("circular”, "open"))

Arguments
X M x N matrix.
y numeric sequence of length V.
conj logical; if TRUE, take the complex conjugate before back-transforming (default,
and used for usual convolution).
type character; one of circular, open (beginning of word is ok). For circular, the

two sequences are treated as circular, i.e., periodic.

For open and filter, the sequences are padded with zeros (from left and right)
first; filter returns the middle sub-vector of open, namely, the result of running
a weighted mean of x with weights y.

cpi 9

Details

This is a corrupted version of convolve made by replacing fft withmvfft in a few places. It would
be nice to submit this to the R Developers for inclusion.

Author(s)

Brandon Whitcher

See Also

convolve

cpi U.S. Consumer Price Index

Description

Monthly U.S. consumer price index from 1948:1 to 1999:12.

Usage

data(cpi)

Format

A vector containing 624 observations.

Source

Unknown.

References

Gencay, R., F. Selcuk and B. Whitcher (2001) An Introduction to Wavelets and Other Filtering
Methods in Finance and Economics, Academic Press.

10 denoise.2d

dau Digital Photograph of Ingrid Daubechies

Description

A digital photograph of Ingrid Daubechies taken at the 1993 AMS winter meetings in San Antonio,
Texas. The photograph was taken by David Donoho with a Canon XapShot video still frame camera.

Usage

data(dau)

Format

A 256 x 256 matrix.

Source

S+WAVELETS.

References

Bruce, A., and H.-Y. Gao (1996) Applied Wavelet Analysis with S-PLUS, Springer: New York.

denoise.2d Denoise an Image via the 2D Discrete Wavelet Transform

Description

Perform simple de-noising of an image using the two-dimensional discrete wavelet transform.

Usage

denoise.dwt.2d(x, wf = "1a8", J = 4, method = "universal”, H = 0.5,
noise.dir = 3, rule = "hard")
denoise.modwt.2d(x, wf = "la8", J = 4, method = "universal”, H = 0.5,
rule = "hard")

denoise.2d 11

Arguments
X input matrix (image)
wf name of the wavelet filter to use in the decomposition
J depth of the decomposition, must be a number less than or equal to log, (min{M, N })
method character string describing the threshold applied, only "universal” and "long-memory"
are currently implemented
H self-similarity or Hurst parameter to indicate spectral scaling, white noise is 0.5
noise.dir number of directions to estimate background noise standard deviation, the de-
fault is 3 which produces a unique estimate of the background noise for each
spatial direction
rule either a "hard” or "soft" thresholding rule may be used
Details
See Thresholding.
Value

Image of the same dimension as the original but with high-freqency fluctuations removed.

Author(s)
B. Whitcher

References

See Thresholding for references concerning de-noising in one dimension.

See Also
Thresholding

Examples

Xbox image

data(xbox)

n <- NROW(xbox)

xbox.noise <- xbox + matrix(rnorm(n*n, sd=.15), n, n)

par(mfrow=c(2,2), cex=.8, pty="s")

image (xbox.noise, col=rainbow(128), main="Original Image")

image(denoise.dwt.2d(xbox.noise, wf="haar"), col=rainbow(128),
zlim=range(xbox.noise), main="Denoised image")

image (xbox.noise - denoise.dwt.2d(xbox.noise, wf="haar"), col=rainbow(128),
zlim=range(xbox.noise), main="Residual image")

Daubechies image

data(dau)

n <- NROW(dau)

dau.noise <- dau + matrix(rnorm(n*n, sd=10), n, n)

12 dpss.taper

nan

par(mfrow=c(2,2), cex=.8, pty="s")

image(dau.noise, col=rainbow(128), main="Original Image")

dau.denoise <- denoise.modwt.2d(dau.noise, wf="d4", rule="soft")

image(dau.denoise, col=rainbow(128), zlim=range(dau.noise),
main="Denoised image")

image(dau.noise - dau.denoise, col=rainbow(128), main="Residual image")

doppler Sinusoid with Changing Amplitude and Frequency

Description

21w
doppl = l—2)sin | ————
oppler(x) 2(1 —) sin <$ 0.05)

Usage
data(doppler)

Format

A vector containing 512 observations.

Source

S+WAVELETS.

References

Bruce, A., and H.-Y. Gao (1996) Applied Wavelet Analysis with S-PLUS, Springer: New York.

dpss. taper Calculating Thomson’s Spectral Multitapers by Inverse Iteration

Description
The following function links the subroutines in "bell-p-w.0" to an R function in order to compute
discrete prolate spheroidal sequences (dpss).

Usage

dpss.taper(n, k, nw = 4, nmax = 2*(ceiling(log(n, 2))))

dpss.taper 13

Arguments

n length of data taper(s)

k number of data tapers; 1, 2, 3, ... (do not use 0!)

nw product of length and half-bandwidth parameter (w)

nmax maximum possible taper length, necessary for FORTRAN code
Details

Spectral estimation using a set of orthogonal tapers is becoming widely used and appreciated in sci-
entific research. It produces direct spectral estimates with more than 2 df at each Fourier frequency,
resulting in spectral estimators with reduced variance. Computation of the orthogonal tapers from
the basic defining equation is difficult, however, due to the instability of the calculations — the
eigenproblem is very poorly conditioned. In this article the severe numerical instability problems
are illustrated and then a technique for stable calculation of the tapers — namely, inverse iteration
— is described. Each iteration involves the solution of a matrix equation. Because the matrix has
Toeplitz form, the Levinson recursions are used to rapidly solve the matrix equation. FORTRAN
code for this method is available through the Statlib archive. An alternative stable method is also
briefly reviewed.

Value
v matrix of data tapers (cols = tapers)
eigen eigenvalue associated with each data taper
iter total number of iterations performed
n same as input
w half-bandwidth parameter
ifault 0 indicates success, see documentation for "bell-p-w" for information on non-
zero values
Author(s)
B. Whitcher
References

B. Bell, D. B. Percival, and A. T. Walden (1993) Calculating Thomson’s spectral multitapers by
inverse iteration, Journal of Computational and Graphical Statistics, 2, No. 1, 119-130.

Percival, D. B. and A. T. Walden (1993) Spectral Estimation for Physical Applications: Multitaper
and Conventional Univariate Techniques, Cambridge University Press.

See Also

sine. taper.

14 Dual-tree Filter Banks

Dual-tree Filter Banks
Filter Banks for Dual-Tree Wavelet Transforms

Description

Analysis and synthesis filter banks used in dual-tree wavelet algorithms.

Usage

afb(x, af)

afb2D(x, af1, af2 = NULL)
afb2D.A(x, af, d)

sfb(lo, hi, sf)

sfb2D(lo, hi, sf1, sf2 = NULL)
sfb2D.A(lo, hi, sf, d)

Arguments
X vector or matrix of observations
af analysis filters. First element of the list is the low-pass filter, second element is
the high-pass filter.
af1,af2 analysis filters for the first and second dimension of a 2D array.
sf synthesis filters. First element of the list is the low-pass filter, second element is
the high-pass filter.
sf1,sf2 synthesis filters for the first and second dimension of a 2D array.
d dimension of filtering (d =1 or 2)
lo low-frequecy coefficients
hi high-frequency coefficients
Details

The functions afb2D. A and sfb2D. A implement the convolutions, either for analysis or synthesis, in
one dimension only. Thus, they are the workhorses of afb2D and sfb2D. The output for the analysis
filter bank along one dimension (afb2D.A) is a list with two elements

lo low-pass subband
hi high-pass subband
where the dimension of analysis will be half its original length. The output for the synthesis filter

bank along one dimension (sfb2D.A) will be the output array, where the dimension of synthesis
will be twice its original length.

Dual-tree Filter Banks 15

Value
In one dimension the output for the analysis filter bank (afb) is a list with two elements

lo Low frequecy output

hi High frequency output

and the output for the synthesis filter bank (sfb) is the output signal.

In two dimensions the output for the analysis filter bank (afb2D) is a list with four elements

lo low-pass subband
hil[1]] ’lohi’ subband
hi[[2]1] “hilo’ subband
hi[[3]1] “hihi” subband

and the output for the synthesis filter bank (sfb2D) is the output array.

Author(s)
Matlab: S. Cai, K. Li and I. Selesnick; R port: B. Whitcher

References

WAVELET SOFTWARE AT POLYTECHNIC UNIVERSITY, BROOKLYN, NY
http://eeweb.poly.edu/iselesni/WaveletSoftware/

Examples

EXAMPLE: afb, sfb
af = farras()$af

sf = farras()$sf

X = rnorm(64)

x.afb = afb(x, af)
lo = x.afbs$lo

hi = x.afb$hi

y = sfb(lo, hi, sf)
err =x -y

max (abs(err))

EXAMPLE: afb2D, sfb2D

x = matrix(rnorm(32x64), 32, 64)
af = farras()$af

sf = farras()$sf

x.afb2D = afb2D(x, af, af)

lo = x.afb2D$lo

hi = x.afb2D$hi

y = sfb2D(lo, hi, sf, sf)

err =x -y

max (abs(err))

Example: afb2D.A, sfb2D.A

http://eeweb.poly.edu/iselesni/WaveletSoftware/

16 dualfiltl

x = matrix(rnorm(32x64), 32, 64)
af = farras()$af

sf = farras()$sf

x.afb2D.A = afb2D.A(x, af, 1)

lo = x.afb2D.A$lo

hi = x.afb2D.A$hi

y = sfb2D.A(lo, hi, sf, 1)

err = x -y

max(abs(err))

dualfilti Kingsbury’s Q-filters for the Dual-Tree Complex DWT

Description

Kingsbury’s Q-filters for the dual-tree complex DWT.

Usage
dualfilt1()

Arguments

None.

Details

These cofficients are rounded to 8 decimal places.

Value
af List (z = 1, 2) - analysis filters for tree ¢
sf List (¢ = 1, 2) - synthesis filters for tree ¢

Note: af[[2]] is the reverse of af[[1]].

Author(s)
Matlab: S. Cai, K. Li and I. Selesnick; R port: B. Whitcher

References

Kingsbury, N.G. (2000). A dual-tree complex wavelet transform with improved orthogonality and
symmetry properties, Proceedings of the IEEE Int. Conf. on Image Proc. (ICIP).

WAVELET SOFTWARE AT POLYTECHNIC UNIVERSITY, BROOKLYN, NY
http://eeweb.poly.edu/iselesni/WaveletSoftware/

See Also

dualtree

http://eeweb.poly.edu/iselesni/WaveletSoftware/

Dualtree 17

Dualtree Dual-tree Complex Discrete Wavelet Transform

Description

One- and two-dimensional dual-tree complex discrete wavelet transforms developed by Kingsbury
and Selesnick et al.

Usage

dualtree(x, J, Faf, af)
idualtree(w, J, Fsf, sf)
dualtree2D(x, J, Faf, af)
idualtree2D(w, J, Fsf, sf)

Arguments

X N-point vector or M x N matrix.

w DWT coefficients.

J number of stages.

Faf analysis filters for the first stage.

af analysis filters for the remaining stages.

Fsf synthesis filters for the last stage.

sf synthesis filters for the preceeding stages.
Details

In one dimension N is divisible by 27 and N > 27~1 . length(af).

In two dimensions, these two conditions must hold for both M and N.

Value

For the analysis of x, the output is

w DWT coefficients. Each wavelet scale is a list containing the real and imaginary
parts. The final scale (JJ 4 1) contains the low-pass filter coefficients.

For the synthesis of w, the output is

y output signal

Author(s)
Matlab: S. Cai, K. Li and I. Selesnick; R port: B. Whitcher

18

References

WAVELET SOFTWARE AT POLYTECHNIC UNIVERSITY, BROOKLYN, NY
http://eeweb.poly.edu/iselesni/WaveletSoftware/

See Also

FSfarras, farras, convolve, cshift, afb, sfb.

Examples

EXAMPLE: dualtree

x = rnorm(512)

J =4

Faf = FSfarras()$af

Fsf = FSfarras()$sf

af = dualfilt1()$af

sf = dualfilt1()$sf

w = dualtree(x, J, Faf, af)
y = idualtree(w, J, Fsf, sf)
err =x -y

max(abs(err))

Example: dualtree2D

X = matrix(rnorm(64x64), 64, 64)
J=3

Faf = FSfarras()$af

Fsf = FSfarras()$sf

af = dualfilt1()$af

sf = dualfilt1()$sf

w = dualtree2D(x, J, Faf, af)
y = idualtree2D(w, J, Fsf, sf)
err =x -y

max(abs(err))

Display 2D wavelets of dualtree2D.m

J <-4

L <= 3 % 2°(J+1)

N<-L /2]

Faf <- FSfarras()$af

Fsf <- FSfarras()$sf

af <- dualfilt1()$af

sf <- dualfilt1()$sf

x <- matrix(@, 2%L, 3%L)

w <- dualtree2D(x, J, Faf, af)
wlLLIJTICCTIICC1IION/2, N/2+@xN] <- 1
wl[JIICOTII0021I0N/2, N/2+1xN] <- 1
wlLJTICCTIICC3TI0N/2, N/2+2xN] <- 1
WLLJTICL2JICC1II0N/2+N, N/2+0%N] <- 1
wlLJJIC[2JIC02]I0N/ 24N, N/2+1%N] <- 1
wLLJJICL2JICC3TI0N/2+N, N/2+2%N] <- 1
y <- idualtree2D(w, J, Fsf, sf)

Dualtree

http://eeweb.poly.edu/iselesni/WaveletSoftware/

Dualtree Complex 19

image(t(y), col=grey(0:64/64), axes=FALSE)

Dualtree Complex Dual-tree Complex 2D Discrete Wavelet Transform

Description

Dual-tree complex 2D discrete wavelet transform (DWT).

Usage

cplxdual2D(x, J, Faf, af)
icplxdual2D(w, J, Fsf, sf)

Arguments
X 2D array.
w wavelet coefficients.
number of stages.
Faf first stage analysis filters for tree 7.
af analysis filters for the remaining stages on tree .
Fsf last stage synthesis filters for tree <.
sf synthesis filters for the preceeding stages.
Value

For the analysis of x, the output is

w wavelet coefficients indexed by [[jII[[i]1[[d1]1][[d2]], wherej =1,...,J
(scale), i = 1 (real part) or ¢ = 2 (imag part), dl = 1,2 and d2 = 1,2, 3 (orien-
tations).

For the synthesis of w, the output is

y output signal.

Author(s)
Matlab: S. Cai, K. Li and I. Selesnick; R port: B. Whitcher

References
WAVELET SOFTWARE AT POLYTECHNIC UNIVERSITY, BROOKLYN, NY
http://eeweb.poly.edu/iselesni/WaveletSoftware/

See Also

FSfarras, farras, afb2D, sfb2D.

http://eeweb.poly.edu/iselesni/WaveletSoftware/

Examples

Not run:

EXAMPLE: cplxdual2D

x = matrix(rnorm(32*32), 32, 32)
J =25

Faf = FSfarras()$af

Fsf = FSfarras()$sf

af = dualfilt1()$af

sf = dualfilt1()$sf

w = cplxdual2D(x, J, Faf, af)
y = icplxdual2D(w, J, Fsf, sf)
err = x -y

max (abs(err))

End(Not run)

dwpt

dwpt

(Inverse) Discrete Wavelet Packet Transforms

Description

All possible filtering combinations (low- and high-pass) are performed to decompose a vector or
time series. The resulting coefficients are associated with a binary tree structure corresponding to a
partitioning of the frequency axis.

Usage

dwpt(x, wf="1a8", n.levels=4, boundary="periodic")
idwpt(y, y.basis)
modwpt(x, wf = "1la8", n.levels = 4, boundary = "periodic")

a vector or time series containing the data be to decomposed. This must be a

Name of the wavelet filter to use in the decomposition. By default this is set
to "1a8", the Daubechies orthonormal compactly supported wavelet of length
L = 8 (Daubechies, 1992), least asymmetric family.

Specifies the depth of the decomposition. This must be a number less than or

Character string specifying the boundary condition. If boundary=="periodic"
the default, then the vector you decompose is assumed to be periodic on its

if boundary=="reflection”, the vector beyond its boundaries is assumed to

Arguments

X

dyadic length vector (power of 2).
wf
n.levels

equal to log(length(z), 2).
boundary

defined interval,

be a symmetric reflection of itself.
y Object of S3 class dwpt.
y.basis

Vector of character strings that describe leaves on the DWPT basis tree.

dwpt 21

Details

The code implements the one-dimensional DWPT using the pyramid algorithm (Mallat, 1989).

Value

Basically, a list with the following components

w?.? Wavelet coefficient vectors. The first index is associated with the scale of the
decomposition while the second is associated with the frequency partition within
that level.

wavelet Name of the wavelet filter used.

boundary How the boundaries were handled.

Author(s)
B. Whitcher
References

Mallat, S. G. (1989) A theory for multiresolution signal decomposition: the wavelet representation,
IEEFE Transactions on Pattern Analysis and Machine Intelligence, 11, No. 7, 674-693.

Percival, D. B. and A. T. Walden (2000) Wavelet Methods for Time Series Analysis, Cambridge
University Press.

Wickerhauser, M. V. (1994) Adapted Wavelet Analysis from Theory to Software, A K Peters.

See Also

dwt, modwpt, wave.filter.

Examples

data(mexm)

J <-4

mexm.mra <- mra(log(mexm), "mb8"”, J, "modwt”, "reflection”)

mexm.nomean <- ts(
apply(matrix(unlist(mexm.mra), ncol=J+1, byrow=FALSE)[,-(J+1)], 1, sum),
start=1957, freg=12)

mexm.dwpt <- dwpt(mexm.nomean[-c(1:4)]1, "mb8", 7, "reflection")

22 dwpt.2d

dwpt.2d (Inverse) Discrete Wavelet Packet Transforms in Two Dimensions

Description

All possible filtering combinations (low- and high-pass) are performed to decompose a matrix or
image. The resulting coefficients are associated with a quad-tree structure corresponding to a parti-
tioning of the two-dimensional frequency plane.

Usage

dwpt.2d(x, wf="1a8", J=4, boundary="periodic")
idwpt.2d(y, y.basis)

Arguments
X a matrix or image containing the data be to decomposed. This ojbect must be
dyadic (power of 2) in length in each dimension.
wf Name of the wavelet filter to use in the decomposition. By default this is set
to "1a8", the Daubechies orthonormal compactly supported wavelet of length
L = 8 (Daubechies, 1992), least asymmetric family.
J Specifies the depth of the decomposition. This must be a number less than or
equal to log(length(z), 2).
boundary Character string specifying the boundary condition. If boundary=="periodic"
the default, then the vector you decompose is assumed to be periodic on its
defined interval,
if boundary=="reflection", the vector beyond its boundaries is assumed to
be a symmetric reflection of itself.
\ dwpt. 2d object (list-based structure of matrices)
y.basis Boolean vector, the same length as y, where TRUE means the basis tensor should
be used in the reconstruction.
Details

The code implements the two-dimensional DWPT using the pyramid algorithm of Mallat (1989).

Value
Basically, a list with the following components

w?.?2-w?.? Wavelet coefficient matrices (images). The first index is associated with the
scale of the decomposition while the second is associated with the frequency
partition within that level. The left and right strings, separated by the dash *-’,
correspond to the first (z) and second (y) dimensions.

wavelet Name of the wavelet filter used.

boundary How the boundaries were handled.

dwpt.boot 23

Author(s)
B. Whitcher

References

Mallat, S. G. (1989) A theory for multiresolution signal decomposition: the wavelet representation,
IEEFE Transactions on Pattern Analysis and Machine Intelligence, 11, No. 7, 674-693.

Wickerhauser, M. V. (1994) Adapted Wavelet Analysis from Theory to Software, A K Peters.

See Also

dwt.2d, modwt.2d, wave.filter.

dwpt.boot Bootstrap Time Series Using the DWPT

Description

An adaptive orthonormal basis is selected in order to perform the naive bootstrap within nodes of
the wavelet packet tree. A bootstrap realization of the time series is produce by applying the inverse
DWPT.

Usage
dwpt.boot(y, wf, J=log(length(y),2)-1, p=1e-04, frac=1)

Arguments
y Not necessarily dyadic length time series.
wf Name of the wavelet filter to use in the decomposition. See wave.filter for
those wavelet filters available.
J Depth of the discrete wavelet packet transform.
p Level of significance for the white noise testing procedure.
frac Fraction of the time series that should be used in constructing the likelihood
function.
Details

A subroutines is used to select an adaptive orthonormal basis for the piecewise-constant approxima-
tion to the underlying spectral density function (SDF). Once selected, sampling with replacement
is performed within each wavelet packet coefficient vector and the new collection of wavelet packet
coefficients are reconstructed into a bootstrap realization of the original time series.

Value

Time series of length N, where N is the length of y.

24 dwpt.sim

Author(s)
B. Whitcher

References

Percival, D.B., S. Sardy, A. Davision (2000) Wavestrapping Time Series: Adaptive Wavelet-Based
Bootstrapping, in B.J. Fitzgerald, R.L. Smith, A.T. Walden, P.C. Young (Eds.) Nonlinear and
Nonstationary Signal Processing, pp. 442-471.

Whitcher, B. (2001) Simulating Gaussian Stationary Time Series with Unbounded Spectra, Journal
of Computational and Graphical Statistics, 10, No. 1, 112-134.

Whitcher, B. (2004) Wavelet-Based Estimation for Seasonal Long-Memory Processes, Technomet-
rics, 46, No. 2, 225-238.

See Also

dwpt.sim, spp.mle

dwpt.sim Simulate Seasonal Persistent Processes Using the DWPT

Description

A seasonal persistent process may be characterized by a spectral density function with an asymptote
occuring at a particular frequency in [0, %) It’s time domain representation was first noted in
passing by Hosking (1981). Although an exact time-domain approach to simulation is possible, this
function utilizes the discrete wavelet packet transform (DWPT).

Usage

dwpt.sim(N, wf, delta, fG, M=2, adaptive=TRUE, epsilon=0.05)

Arguments
N Length of time series to be generated.
wf Character string for the wavelet filter.
delta Long-memory parameter for the seasonal persistent process.
fG Gegenbauer frequency.
M Actual length of simulated time series.
adaptive Logical; if TRUE the orthonormal basis used in the DWPT is adapted to the ideal

spectrum, otherwise the orthonormal basis is performed to a maximum depth.

epsilon Threshold for adaptive basis selection.

dwt 25

Details

Two subroutines are used, the first selects an adaptive orthonormal basis for the true spectral den-
sity function (SDF) while the second computes the bandpass variances associated with the chosen
orthonormal basis and SDF. Finally, when

M >N

a uniform random variable is generated in order to select a random piece of the simulated time
series. For more details see Whitcher (2001).

Value

Time series of length N.

Author(s)
B. Whitcher

References

Hosking, J. R. M. (1981) Fractional Differencing, Biometrika, 68, No. 1, 165-176.

Whitcher, B. (2001) Simulating Gaussian Stationary Time Series with Unbounded Spectra, Journal
of Computational and Graphical Statistics, 10, No. 1, 112-134.

See Also

hosking.sim for an exact time-domain method and wave.filter for a list of available wavelet
filters.

Examples

Generate monthly time series with annual oscillation

library(ts) is required in order to access acf()

x <- dwpt.sim(256, "mb16", .4, 1/12, M=4, epsilon=.001)
par(mfrow=c(2,1))

plot(x, type="1", xlab="Time")

acf(x, lag.max=128, ylim=c(-.6,1))

data(acvs.andel8)

lines(acvs.andel8%$1lag[1:128], acvs.andel8$acf[1:128], col=2)

dwt Discrete Wavelet Transform (DWT)

Description

This function performs a level JJ decomposition of the input vector or time series using the pyramid
algorithm (Mallat 1989).

26

Usage

dwt

dwt(x, wf="1a8", n.levels=4, boundary="periodic")
dwt.nondyadic(x)

Arguments

X

wf

n.levels

boundary

Details

a vector or time series containing the data be to decomposed. This must be a
dyadic length vector (power of 2).

Name of the wavelet filter to use in the decomposition. By default this is set
to "1a8", the Daubechies orthonormal compactly supported wavelet of length
L = 8 (Daubechies, 1992), least asymmetric family.

Specifies the depth of the decomposition. This must be a number less than or
equal to log(length(z), 2).

Character string specifying the boundary condition. If boundary=="periodic"
the default, then the vector you decompose is assumed to be periodic on its
defined interval,

if boundary=="reflection", the vector beyond its boundaries is assumed to
be a symmetric reflection of itself.

The code implements the one-dimensional DWT using the pyramid algorithm (Mallat, 1989). The
actual transform is performed in C using pseudocode from Percival and Walden (2001). That means
convolutions, not inner products, are used to apply the wavelet filters.

For a non-dyadic length vector or time series, dwt.nondyadic pads with zeros, performs the or-
thonormal DWT on this dyadic length series and then truncates the wavelet coefficient vectors

appropriately.

Value

Basically, a list with the following components

d?
s?
wavelet

boundary

Author(s)
B. Whitcher

References

Wavelet coefficient vectors.
Scaling coefficient vector.
Name of the wavelet filter used.

How the boundaries were handled.

Daubechies, 1. (1992) Ten Lectures on Wavelets, CBMS-NSF Regional Conference Series in Ap-
plied Mathematics, SIAM: Philadelphia.

Gencay, R., F. Selcuk and B. Whitcher (2001) An Introduction to Wavelets and Other Filtering
Methods in Finance and Economics, Academic Press.

dwt 27

Mallat, S. G. (1989) A theory for multiresolution signal decomposition: the wavelet representation,
IEEFE Transactions on Pattern Analysis and Machine Intelligence, 11, No. 7, 674-693.

Percival, D. B. and A. T. Walden (2000) Wavelet Methods for Time Series Analysis, Cambridge
University Press.

See Also

modwt, mra.

Examples

Figures 4.17 and 4.18 in Gencay, Selcuk and Whitcher (2001).

data(ibm)

ibm.returns <- diff(log(ibm))

Haar

ibmr.haar <- dwt(ibm.returns, "haar")
names(ibmr.haar) <- c("w1”, "w2", "w3", "w4", "v4")

plot partial Haar DWT for IBM data

par(mfcol=c(6,1), pty="m", mar=c(5-2,4,4-2,2))

plot.ts(ibm.returns, axes=FALSE, ylab="", main="(a)")

for(i in 1:4)

plot.ts(up.sample(ibmr.haar[[i]], 2*i), type="h", axes=FALSE,
ylab=names(ibmr.haar)[i])

plot.ts(up.sample(ibmr.haar$v4, 2*4), type="h", axes=FALSE,
ylab=names(ibmr.haar)[5])

axis(side=1, at=seq(@,368,by=23),

labels=c(@,"",46,"",92,"" 138,"",184,"" 230,"",276,"",322,"" 368))

LA(8)
ibmr.1la8 <- dwt(ibm.returns, "1a8")
names(ibmr.1a8) <- c("w1”, "w2", "w3", "w4", "v4")

must shift LA(8) coefficients
ibmr.1a8%$w1 <- c(ibmr.la8$wi[-c(1:2)], ibmr.la8%$w1[1:2])
ibmr.1a8%$w2 <- c(ibmr.la8$w2[-c(1:2)], ibmr.la8%$w2[1:2])
for(i in names(ibmr.1la8)[3:4])
ibmr.1a8[[i]1] <- c(ibmr.1a8[[i]]1[-c(1:3)], ibmr.1la8[[i]]1[1:31)
ibmr.1la8%$v4 <- c(ibmr.la8$v4[-c(1:2)], ibmr.la8%$v4[1:2])
plot partial LA(8) DWT for IBM data
par(mfcol=c(6,1), pty="m", mar=c(5-2,4,4-2,2))
plot.ts(ibm.returns, axes=FALSE, ylab="", main="(b)")
for(i in 1:4)
plot.ts(up.sample(ibmr.1a8[[i]], 2%i), type="h", axes=FALSE,
ylab=names(ibmr.1a8)[i])
plot.ts(up.sample(ibmr.la8%$v4, 2%4), type="h", axes=FALSE,
ylab=names(ibmr.1a8)[5])
axis(side=1, at=seq(@,368,by=23),
labels=c(o,"",46,"",92,"",138,"",184,"",230,"",276,"",322,"",368))

28 dwt.2d

dwt.2d Two-Dimensional Discrete Wavelet Transform

Description

Performs a separable two-dimensional discrete wavelet transform (DWT) on a matrix of dyadic

dimensions.
Usage
dwt.2d(x, wf, J = 4, boundary = "periodic")
idwt.2d(y)
Arguments
X input matrix (image)
wf name of the wavelet filter to use in the decomposition
J depth of the decomposition, must be a number less than or equal to log, (min{ M, N })
boundary only "periodic” is currently implemented
y an object of class dwt. 2d
Details

See references.

Value

List structure containing the 3.J + 1 sub-matrices from the decomposition.

Author(s)

B. Whitcher

References

Mallat, S. (1998) A Wavelet Tour of Signal Processing, Academic Press.
Vetterli, M. and J. Kovacevic (1995) Wavelets and Subband Coding, Prentice Hall.

See Also

modwt . 2d.

dwt.3d

Examples

Xbox image

data(xbox)

29

xbox.dwt <- dwt.2d(xbox, "haar”, 3)

par(mfrow=c(1,1), pty="s")

plot.dwt.2d(xbox.dwt)

par(mfrow=c(2,2), pty="s")

image(1:dim(xbox)[1], 1:dim(xbox)[2], xbox, xlab="", ylab="",
main="0Original Image")

image(1:dim(xbox)[1], 1:dim(xbox)[2], idwt.2d(xbox.dwt), xlab="", ylab="",
main="Wavelet Reconstruction")

image(1:dim(xbox)[1], 1:dim(xbox)[2], xbox - idwt.2d(xbox.dwt),

xlab="",

ylab=

nn

, main="Difference")

Daubechies image

data(dau)

par(mfrow=c(1,1), pty="s")
image(dau, col=rainbow(128))

sum(dau*2)

dau.dwt <- dwt.2d(dau, "d4", 3)
plot.dwt.2d(dau.dwt)
sum(plot.dwt.2d(dau.dwt, plot=FALSE)*2)

dwt.3d

Three Dimensional Separable Discrete Wavelet Transform

Description

Three-dimensional separable discrete wavelet transform (DWT).

Usage

dwt.3d(x, wf, J=4, boundary="periodic")

idwt.3d(y)

Arguments

X
wf
J

boundary

y

Author(s)
B. Whitcher

input array

name of the wavelet filter to use in the decomposition

depth of the decomposition, must be a number less than or equal to log, (min{ X, Y, Z})
only "periodic” is currently implemented

an object of class dwt. 3d

30 Farras

exchange Exchange Rates Between the Deutsche Mark, Japanese Yen and U.S.
Dollar

Description
Monthly foreign exchange rates for the Deutsche Mark - U.S. Dollar (DEM-USD) and Japanese
Yen - U.S. Dollar (JPY-USD) starting in 1970.

Usage

data(exchange)

Format

A bivariate time series containing 348 observations.

Source

Unknown.

References

Gencay, R., F. Selcuk and B. Whitcher (2001) An Introduction to Wavelets and Other Filtering
Methods in Finance and Economics, Academic Press.

Farras Farras nearly symmetric filters

Description
Farras nearly symmetric filters for orthogonal 2-channel perfect reconstruction filter bank and Farras
filters organized for the dual-tree complex DWT.

Usage
farras()

FSfarras()

Arguments

None.

Value

af List (¢ = 1, 2) - analysis filters for tree ¢

sf List (¢ = 1, 2) - synthesis filters for tree ¢

fdp.mle 31

Author(s)

Matlab: S. Cai, K. Li and I. Selesnick; R port: Brandon Whitcher

References

A. F. Abdelnour and I. W. Selesnick. “Nearly symmetric orthogonal wavelet bases”, Proc. IEEE
Int. Conf. Acoust., Speech, Signal Processing (ICASSP), May 2001.

WAVELET SOFTWARE AT POLYTECHNIC UNIVERSITY, BROOKLYN, NY
http://eeweb.poly.edu/iselesni/WaveletSoftware/

See Also

afb, dualtree, dualfiltl.

fdp.mle Wavelet-based Maximum Likelihood Estimation for a Fractional Dif-
ference Process

Description
Parameter estimation for a fractional difference (long-memory, self-similar) process is performed
via maximum likelihood on the wavelet coefficients.

Usage
fdp.mle(y, wf, J=log(length(y),2))

Arguments
y Dyadic length time series.
wf Name of the wavelet filter to use in the decomposition. See wave.filter for
those wavelet filters available.
J Depth of the discrete wavelet transform.
Details

The variance-covariance matrix of the original time series is approximated by its wavelet-based
equivalent. A Whittle-type likelihood is then constructed where the sums of squared wavelet coef-
ficients are compared to bandpass filtered version of the true spectrum. Minimization occurs only
for the fractional difference parameter d, while variance is estimated afterwards.

Value

List containing the maximum likelihood estimates (MLEs) of d and o2, along with the value of the
likelihood for those estimates.

http://eeweb.poly.edu/iselesni/WaveletSoftware/

32 find.adaptive.basis

Author(s)
B. Whitcher

References

M. J. Jensen (2000) An alternative maximum likelihood estimator of long-memory processes using
compactly supported wavelets, Journal of Economic Dynamics and Control, 24, No. 3, 361-387.

McCoy, E. J., and A. T. Walden (1996) Wavelet analysis and synthesis of stationary long-memory
processes, Journal for Computational and Graphical Statistics, 5, No. 1, 26-56.

Percival, D. B. and A. T. Walden (2000) Wavelet Methods for Time Series Analysis, Cambridge
University Press.

Examples

Figure 5.5 in Gencay, Selcuk and Whitcher (2001)
fdp.sdf <- function(freq, d, sigma2=1)
sigma2 / ((2*sin(pi * freq))*2)*d
dB <- function(x) 10 * logl@(x)
per <- function(z) {
n <- length(z)
(Mod(fft(z))**2/(2xpi*xn))[1:(n %/% 2 + 1)]
}
data(ibm)
ibm.returns <- diff(log(ibm))
ibm.volatility <- abs(ibm.returns)
ibm.vol.mle <- fdp.mle(ibm.volatility, "d4", 4)
freq <- 0:184/368
ibm.vol.per <- 2 x pi x per(ibm.volatility)
ibm.vol.resid <- ibm.vol.per/ fdp.sdf(freq, ibm.vol.mle$parameters[1])
par(mfrow=c(1,1), las=0, pty="m")
plot(freq, dB(ibm.vol.per), type="1", xlab="Frequency”, ylab="Spectrum”)
lines(freq, dB(fdp.sdf(freq, ibm.vol.mle$parameters[1],
ibm.vol.mle$parameters[2]1/2)), col=2)

find.adaptive.basis Determine an Orthonormal Basis for the Discrete Wavelet Packet
Transform

Description
Subroutine for use in simulating seasonal persistent processes using the discrete wavelet packet
transform.

Usage

find.adaptive.basis(wf, J, fG, eps)

heavisine 33

Arguments
wf Character string; name of the wavelet filter.
J Depth of the discrete wavelet packet transform.
fG Gegenbauer frequency.
eps Threshold for the squared gain function.
Details

The squared gain functions for a Daubechies (extremal phase or least asymmetric) wavelet family
are used in a filter cascade to compute the value of the squared gain function for the wavelet packet
filter at the Gengenbauer frequency. This is done for all nodes of the wavelet packet table.

The idea behind this subroutine is to approximate the relationship between the discrete wavelet
transform and long-memory processes, where the squared gain function is zero at frequency zero
for all levels of the DWT.

Value

Boolean vector describing the orthonormal basis for the DWPT.

Author(s)
B. Whitcher

See Also

Used in dwpt.sim.

heavisine Sine with Jumps at 0.3 and 0.72

Description

heavisine(z) = 4sin(4drx) — sign(x — 0.3) — sign(0.72 — z)

Usage

data(heavisine)

Format

A vector containing 512 observations.

Source

S+WAVELETS.

34 Hilbert

References

Bruce, A., and H.-Y. Gao (1996) Applied Wavelet Analysis with S-PLUS, Springer: New York.

Hilbert Discrete Hilbert Wavelet Transforms

Description

The discrete Hilbert wavelet transforms (DHWTs) for seasonal and time-varying time series anal-
ysis. Transforms include the usual orthogonal (decimated), maximal-overlap (non-decimated) and
maximal-overlap packet transforms.

Usage
dwt.hilbert(x, wf, n.levels=4, boundary="periodic"”, ...)
dwt.hilbert.nondyadic(x, ...)
idwt.hilbert(y)
modwt.hilbert(x, wf, n.levels=4, boundary="periodic", ...)

imodwt.hilbert(y)
modwpt.hilbert(x, wf, n.levels=4, boundary="periodic")

Arguments
X Real-valued time series or vector of observations.
wf Hilbert wavelet pair
n.levels Number of levels (depth) of the wavelet transform.
boundary Boundary treatment, currently only periodic and reflection.
y Hilbert wavelet transform object (list).
Additional parametes to be passed on.
Author(s)
B. Whitcher
References

Selesnick, 1. (200X). IEEE Signal Processing Magazine
Selesnick, 1. (200X). IEEE Transactions in Signal Processing

Whither, B. and P.F. Craigmile (2004). Multivariate Spectral Analysis Using Hilbert Wavelet Pairs,
International Journal of Wavelets, Multiresolution and Information Processing, to appear.

See Also

hilbert.filter

hilbert.filter 35

hilbert.filter Select a Hilbert Wavelet Pair

Description

Converts name of Hilbert wavelet pair to filter coefficients.

Usage

hilbert.filter(name)

Arguments

name Character string of Hilbert wavelet pair, see acceptable names below (e.g., "k313").

Details

Simple switch statement selects the appropriate HWP. There are two parameters that define a
Hilbert wavelet pair using the notation of Selesnick (2001,2002), K and L. Currently, the only
implemented combinations (K, L) are (3,3), (3,5), (4,2) and (4,4).

Value

List containing the following items:

L length of the wavelet filter
ho, go low-pass filter coefficients
h1,g1 high-pass filter coefficients
Author(s)
B. Whitcher
References

Selesnick, I.W. (2001). Hilbert transform pairs of wavelet bases. IEEE Signal Processing Let-
tersV~8(6), 170-173.

Selesnick, I.W. (2002). The design of approximate Hilbert transform pairs of wavelet bases. /EEE
Transactions on Signal ProcessingV/~50(5), 1144—1152.

See Also

wave.filter

36 hosking.sim

Examples

hilbert.filter("k313")
hilbert.filter("k315")
hilbert.filter("k412")
hilbert.filter("k414")

hosking.sim Generate Stationary Gaussian Process Using Hosking’s Method

Description
Uses exact time-domain method from Hosking (1984) to generate a simulated time series from a
specified autocovariance sequence.

Usage

hosking.sim(n, acvs)

Arguments
n Length of series.
acvs Autocovariance sequence of series with which to generate, must be of length at
least n.
Value

Length n time series from true autocovariance sequence acvs.

Author(s)
Brandon Whitcher

References

Hosking, J. R. M. (1984) Modeling persistence in hydrological time series using fractional differ-
encing, Water Resources Research, 20, No. 12, 1898-1908.

Percival, D. B. (1992) Simulating Gaussian random processes with specified spectra, Computing
Science and Statistics, 22, 534-538.

Examples

dB <- function(x) 10 * logl@(x)
per <- function (z) {
n <- length(z)
(Mod(fft(z))*2/(2 * pi * n))[1:(n%/%2 + 1)]
3
spp.sdf <- function(freq, delta, omega)
abs(2 * (cos(2xpi*freq) - cos(2*pixomega)))*(-2*delta)

HWP Analysis 37

data(acvs.andel8)

n <- 1024

Not run:

z <- hosking.sim(n, acvs.andel8[,2])

per.z <- 2 * pi * per(z)

par(mfrow=c(2,1), las=1)

plot.ts(z, ylab="", main="Realization of a Seasonal Long-Memory Process")

plot(@:(n/2)/n, dB(per.z), type="1", xlab="Frequency”, ylab="dB",
main="Periodogram")

lines(@:(n/2)/n, dB(spp.sdf(@:(n/2)/n, .4, 1/12)), col=2)

End(Not run)

HWP Analysis Time-varying and Seasonal Analysis Using Hilbert Wavelet Pairs

Description

Performs time-varying or seasonal coherence and phase anlaysis between two time seris using the
maximal-overlap discrete Hilbert wavelet transform (MODHWT).

Usage

modhwt.coh(x, y, f.length = @)

modhwt.phase(x, y, f.length = 0)
modhwt.coh.seasonal(x, y, S = 10, season = 365)
modhwt.phase.seasonal(x, y, season = 365)

Arguments
X MODHWT object.
y MODHWT object.
f.length Length of the rectangular filter.
S Number of "seasons".
season Length of the "season".
Details

The idea of seasonally-varying spectral analysis (SVSA, Madden 1986) is generalized using the
MODWT and Hilbert wavelet pairs. For the seasonal case, S seasons are used to produce a consis-
tent estimate of the coherence and phase. For the non-seasonal case, a simple rectangular (moving-
average) filter is applied to the MODHWT coefficients in order to produce consistent estimates.

Value

Time-varying or seasonal coherence and phase between two time series. The coherence estimates
are between zero and one, while the phase estimates are between —7 and 7.

38 ibm

Author(s)

B. Whitcher

References

Madden, R.A. (1986). Seasonal variation of the 40-50 day oscillation in the tropics. Journal of the
Atmospheric SciencesV 43V(24), 3138-3158.

Whither, B. and P.F. Craigmile (2004). Multivariate Spectral Analysis Using Hilbert Wavelet Pairs,
International Journal of Wavelets, Multiresolution and Information Processing, to appear.

See Also

hilbert.filter

ibm Daily IBM Stock Prices

Description

Daily IBM stock prices spanning May~17, 1961 to November~2, 1962.

Usage

data(ibm)

Format

A vector containing 369 observations.

Source

Box, G. E.~P. and Jenkins, G.~M. (1976) Time Series Analysis: Forecasting and Control, Holden
Day, San Francisco, 2 edition.

Jjapan 39

japan Japanese Gross National Product

Description

Quarterly Japanese gross national product from 1955:1 to 1996:4.

Usage

data(japan)

Format

A vector containing 169 observations.

Source

Unknown.

References

Gencay, R., F. Selcuk and B. Whitcher (2001) An Introduction to Wavelets and Other Filtering
Methods in Finance and Economics, Academic Press.

Hecq, A. (1998) Does seasonal adjustment induce common cycles?, Empirical Economics, 59, 289-
297.

jumpsine Sine with Jumps at 0.625 and 0.875

Description

Jjumpsine(r) = 10 (sin(47rx) + 1[0.625<x§0.875])

Usage

data(jumpsine)

Format

A vector containing 512 observations.

Source

S+WAVELETS.

40 linchirp

References

Bruce, A., and H.-Y. Gao (1996) Applied Wavelet Analysis with S-PLUS, Springer: New York.

kobe 1995 Kobe Earthquake Data

Description

Seismograph (vertical acceleration, nm/sq.sec) of the Kobe earthquake, recorded at Tasmania Uni-
versity, HobarTRUE, Australia on 16 January 1995 beginning at 20:56:51 (GMTRUE) and contin-
uing for 51 minutes at 1 second intervals.

Usage
data(kobe)

Format

A vector containing 3048 observations.

Source

Data management centre, Washington University.

linchirp Linear Chirp

Description
linchirp(x) = sin(0.125mna?)

Usage
data(linchirp)

Format

A vector containing 512 observations.

Source

S+WAVELETS.

References

Bruce, A., and H.-Y. Gao (1996) Applied Wavelet Analysis with S-PLUS, Springer: New York.

mexm 41

mexm Mexican Money Supply

Description

Percentage changes in monthly Mexican money supply.

Usage

data(mexm)

Format

A vector containing 516 observations.

Source

Unknown.

References

Gencay, R., F. Selcuk and B. Whitcher (2001) An Introduction to Wavelets and Other Filtering
Methods in Finance and Economics, Academic Press.

modwt (Inverse) Maximal Overlap Discrete Wavelet Transform

Description

This function performs a level J decomposition of the input vector using the non-decimated discrete
wavelet transform. The inverse transform performs the reconstruction of a vector or time series from
its maximal overlap discrete wavelet transform.

Usage

modwt (x, wf = "la8", n.levels = 4, boundary = "periodic”)
imodwt (y)

42

Arguments

X

wf

n.levels

boundary

Details

modwt

a vector or time series containing the data be to decomposed. There is no re-
striction on its length.

Object of class "modwt”.

Name of the wavelet filter to use in the decomposition. By default this is set
to "1a8", the Daubechies orthonormal compactly supported wavelet of length
L = 8 (Daubechies, 1992), least asymmetric family.

Specifies the depth of the decomposition. This must be a number less than or
equal to log, (length(z)).

Character string specifying the boundary condition. If boundary=="periodic”
the defaulTRUE, then the vector you decompose is assumed to be periodic on
its defined interval,

if boundary=="reflection", the vector beyond its boundaries is assumed to
be a symmetric reflection of itself.

The code implements the one-dimensional non-decimated DWT using the pyramid algorithm. The
actual transform is performed in C using pseudocode from Percival and Walden (2001). That means
convolutions, not inner products, are used to apply the wavelet filters.

The MODWT goes by several names in the statistical and engineering literature, such as, the “sta-
tionary DWT”, “translation-invariant DWT”, and “time-invariant DWT”.

The inverse MODWT implements the one-dimensional inverse transform using the pyramid algo-
rithm (Mallat, 1989).

Value

Object of class "modwt"”, basically, a list with the following components

d?
s?
wavelet

boundary

Author(s)
B. Whitcher

References

Wavelet coefficient vectors.
Scaling coefficient vector.
Name of the wavelet filter used.

How the boundaries were handled.

Gencay, R., F. Selcuk and B. Whitcher (2001) An Introduction to Wavelets and Other Filtering
Methods in Finance and Economics, Academic Press.

Percival, D. B. and P. Guttorp (1994) Long-memory processes, the Allan variance and wavelets, In
Wavelets and Geophysics, pages 325-344, Academic Press.

Percival, D. B. and A. T. Walden (2000) Wavelet Methods for Time Series Analysis, Cambridge

University Press.

modwt.2d 43

See Also

dwt, idwt, mra.

Examples
Figure 4.23 in Gencay, Selcuk and Whitcher (2001)
data(ibm)
ibm.returns <- diff(log(ibm))
Haar
ibmr.haar <- modwt(ibm.returns, "haar")
names(ibmr.haar) <- c("w1”, "w2", "w3", "w4", "v4")
LA(8)
ibmr.1la8 <- modwt(ibm.returns, "la8")
names(ibmr.1a8) <- c("w1”, "w2", "w3", "w4", "v4")

shift the MODWT vectors
ibmr.la8 <- phase.shift(ibmr.la8, "1la8")
plot partial MODWT for IBM data
par(mfcol=c(6,1), pty="m", mar=c(5-2,4,4-2,2))
plot.ts(ibm.returns, axes=FALSE, ylab="", main="(a)")
for(i in 1:5)
plot.ts(ibmr.haar[[i]], axes=FALSE, ylab=names(ibmr.haar)[i])
axis(side=1, at=seq(@,368,by=23),
labels=c(0,"",46,"",92,"",138,"" 184,"" 230,"",276,"",322,"", 368))
par(mfcol=c(6,1), pty="m", mar=c(5-2,4,4-2,2))
plot.ts(ibm.returns, axes=FALSE, ylab="", main="(b)")
for(i in 1:5)
plot.ts(ibmr.1a8[[i]], axes=FALSE, ylab=names(ibmr.1la8)[il])
axis(side=1, at=seq(@,368,by=23),
labels=c(Q,"",46,"",92,"",138,"" 184,"" 230,"",276,"",322,"",368))

modwt . 2d Two-Dimensional Maximal Overlap Discrete Wavelet Transform

Description
Performs a separable two-dimensional maximal overlap discrete wavelet transform (MODWT) on
a matrix of arbitrary dimensions.

Usage

modwt.2d(x, wf, J = 4, boundary = "periodic")
imodwt.2d(y)

Arguments
X input matrix
wf name of the wavelet filter to use in the decomposition
J depth of the decomposition
boundary only "periodic” is currently implemented

y an object of class dwt. 2d

44 modwt.2d

Details

See references.

Value

List structure containing the 3.J + 1 sub-matrices from the decomposition.

Author(s)
B. Whitcher

References

Liang, J. and T. W. Parks (1994) A two-dimensional translation invariant wavelet representation and
its applications, Proceedings ICIP-94, Vol. 1, 66-70.

Liang, J. and T. W. Parks (1994) Image coding using translation invariant wavelet transforms with
symmetric extensions, IEEE Transactions on Image Processing, 7, No. 5, 762-769.

See Also
dwt.2d, shift.2d.

Examples

Xbox image

data(xbox)

xbox.modwt <- modwt.2d(xbox, "haar”, 2)

Level 1 decomposition

par(mfrow=c(2,2), pty="s")

image (xbox.modwt$LH1, col=rainbow(128), axes=FALSE, main="LH1")
image (xbox.modwt$HH1, col=rainbow(128), axes=FALSE, main="HH1")
frame()

image (xbox.modwt$HL1, col=rainbow(128), axes=FALSE, main="HL1")
Level 2 decomposition

par(mfrow=c(2,2), pty="s")

image (xbox.modwt$LH2, col=rainbow(128), axes=FALSE, main="LH2")
image (xbox.modwt$HH2, col=rainbow(128), axes=FALSE, main="HH2")
image (xbox.modwt$LL2, col=rainbow(128), axes=FALSE, main="LL2")
image (xbox.modwt$HL2, col=rainbow(128), axes=FALSE, main="HL2")
sum((xbox - imodwt.2d(xbox.modwt))*2)

data(dau)

par(mfrow=c(1,1), pty="s")

image(dau, col=rainbow(128), axes=FALSE, main="Ingrid Daubechies")
sum(dau*2)

dau.modwt <- modwt.2d(dau, "d4", 2)

Level 1 decomposition

par(mfrow=c(2,2), pty="s")

image(dau.modwt$LH1, col=rainbow(128), axes=FALSE, main="LH1")
image (dau.modwt$HH1, col=rainbow(128), axes=FALSE, main="HH1")
frame()

modwt.3d 45

image(dau.modwt$HL1, col=rainbow(128), axes=FALSE, main="HL1")
Level 2 decomposition

par(mfrow=c(2,2), pty="s")

image(dau.modwt$LH2, col=rainbow(128), axes=FALSE, main="LH2")
image (dau.modwt$HH2, col=rainbow(128), axes=FALSE, main="HH2")
image(dau.modwt$LL2, col=rainbow(128), axes=FALSE, main="LL2")
image(dau.modwt$HL2, col=rainbow(128), axes=FALSE, main="HL2")
sum((dau - imodwt.2d(dau.modwt))*2)

modwt . 3d Three Dimensional Separable Maximal Ovelrap Discrete Wavelet
Transform

Description

Three-dimensional separable maximal overlap discrete wavelet transform (MODWT).

Usage

modwt.3d(x, wf, J = 4, boundary = "periodic")
imodwt.3d(y)

Arguments

X input array

wf name of the wavelet filter to use in the decomposition

J depth of the decomposition

boundary only "periodic” is currently implemented

y an object of class modwt . 3d
Author(s)

B. Whitcher

mra Multiresolution Analysis of Time Series

Description

This function performs a level J additive decomposition of the input vector or time series using the
pyramid algorithm (Mallat 1989).

Usage

mra(x, wf = "1a8", J = 4, method = "modwt”, boundary = "periodic")

46

Arguments

X

wf

method

boundary

Details

mra

A vector or time series containing the data be to decomposed. This must be a
dyadic length vector (power of 2) for method="dwt".

Name of the wavelet filter to use in the decomposition. By default this is set
to "1a8", the Daubechies orthonormal compactly supported wavelet of length
L = 8§ least asymmetric family.

Specifies the depth of the decomposition. This must be a number less than or
equal to log(length(z), 2).

Either "dwt"” or "modwt".

Character string specifying the boundary condition. If boundary=="periodic"
the default, then the vector you decompose is assumed to be periodic on its
defined interval,

if boundary=="reflection”, the vector beyond its boundaries is assumed to
be a symmetric reflection of itself.

This code implements a one-dimensional multiresolution analysis introduced by Mallat (1989).
Either the DWT or MODWT may be used to compute the multiresolution analysis, which is an
additive decomposition of the original time series.

Value

Basically, a list with the following components

D?
S?
wavelet

boundary

Author(s)
B. Whitcher

References

Wavelet detail vectors.
‘Wavelet smooth vector.
Name of the wavelet filter used.

How the boundaries were handled.

Gencay, R., F. Selcuk and B. Whitcher (2001) An Introduction to Wavelets and Other Filtering
Methods in Finance and Economics, Academic Press.

Mallat, S. G. (1989) A theory for multiresolution signal decomposition: the wavelet representation,
IEEE Transactions on Pattern Analysis and Machine Intelligence, 11, No. 7, 674-693.

Percival, D. B. and A. T. Walden (2000) Wavelet Methods for Time Series Analysis, Cambridge

University Press.

See Also

dwt, modwt.

mra.2d 47

Examples

Easy check to see if it works...

x <- rnorm(32)

x.mra <- mra(x)

sum(x - apply(matrix(unlist(x.mra), nrow=32), 1, sum))*2

Figure 4.19 in Gencay, Selcuk and Whitcher (2001)
data(ibm)
ibm.returns <- diff(log(ibm))
ibm.volatility <- abs(ibm.returns)
Haar
ibmv.haar <- mra(ibm.volatility, "haar”, 4, "dwt")
names(ibmv.haar) <- c("d1"”, "d2", "d3", "d4", "s4")
LA(8)
ibmv.la8 <- mra(ibm.volatility, "la8", 4, "dwt")
names(ibmv.la8) <- c("d1", "d2", "d3", "d4", "s4")
plot multiresolution analysis of IBM data
par(mfcol=c(6,1), pty="m", mar=c(5-2,4,4-2,2))
plot.ts(ibm.volatility, axes=FALSE, ylab="", main="(a)")
for(i in 1:5)
plot.ts(ibmv.haar[[i]], axes=FALSE, ylab=names(ibmv.haar)[i])
axis(side=1, at=seq(@,368,by=23),
labels=c(0,"",46,"",92,"",138,"",184,"",230,"",276,"",322,"",368))
par(mfcol=c(6,1), pty="m", mar=c(5-2,4,4-2,2))
plot.ts(ibm.volatility, axes=FALSE, ylab="", main="(b)")
for(i in 1:5)
plot.ts(ibmv.1a8[[i]], axes=FALSE, ylab=names(ibmv.la8)[i])
axis(side=1, at=seq(@,368,by=23),
labels=c(0,"",46,"",92,"",138,"",184,"",230,"",276,"",322,"",368))

mra.2d Multiresolution Analysis of an Image

Description
This function performs a level J additive decomposition of the input matrix or image using the
pyramid algorithm (Mallat 1989).

Usage

mra.2d(x, wf = "la8", J = 4, method = "modwt”, boundary = "periodic"”)

Arguments
X A matrix or image containing the data be to decomposed. This must be have
dyadic length in both dimensions (but not necessarily the same) for method="dwt".
wf Name of the wavelet filter to use in the decomposition. By default this is set

to "1a8", the Daubechies orthonormal compactly supported wavelet of length
L = 8 least asymmetric family.

48 mra.2d

J Specifies the depth of the decomposition. This must be a number less than or
equal to log(length(z), 2).

method Either "dwt"” or "modwt".

boundary Character string specifying the boundary condition. If boundary=="periodic”
the default, then the matrix you decompose is assumed to be periodic on its
defined interval,
if boundary=="reflection”, the matrix beyond its boundaries is assumed to
be a symmetric reflection of itself.

Details

This code implements a two-dimensional multiresolution analysis by performing the one-dimensional
pyramid algorithm (Mallat 1989) on the rows and columns of the input matrix. Either the DWT or
MODWT may be used to compute the multiresolution analysis, which is an additive decomposition
of the original matrix (image).

Value

Basically, a list with the following components

LH? Wavelet detail image in the horizontal direction.
HL? Wavelet detail image in the vertical direction.
HH? Wavelet detail image in the diagonal direction.
LLJ Wavelet smooth image at the coarsest resolution.
J Depth of the wavelet transform.
wavelet Name of the wavelet filter used.
boundary How the boundaries were handled.

Author(s)
B. Whitcher

References

Mallat, S. G. (1989) A theory for multiresolution signal decomposition: the wavelet representation,
IEEE Transactions on Pattern Analysis and Machine Intelligence, 11, No. 7, 674-693.

Mallat, S. G. (1998) A Wavelet Tour of Signal Processing, Academic Press.

See Also

dwt. 2d, modwt. 2d

mra.3d

Examples

49

Easy check to see if it works...

R

x <- matrix(rnorm(32%32), 32, 32)

MODWT

x.mra <- mra.2d(x, method="modwt")
x.mra.sum <- x.mra[[1]]
for(j in 2:length(x.mra))

x.mra.sum <- x.mra.sum + x.mra[[j]]
sum((x - x.mra.sum)"2)

DWT

x.mra <- mra.2d(x, method="dwt")
x.mra.sum <- x.mra[[1]]
for(j in 2:length(x.mra))

X.mra.sum <- x.mra.sum + x.mral[[j]]
sum((x - x.mra.sum)*2)

mra. 3d

Three Dimensional Multiresolution Analysis

Description

This function performs a level J additive decomposition of the input array using the pyramid algo-
rithm (Mallat 1989).

Usage

mra.3d(x, wf, J=4, method="modwt", boundary="periodic")

Arguments

X

wf

method

boundary

A three-dimensional array containing the data be to decomposed. This must be
have dyadic length in all three dimensions (but not necessarily the same) for
method="dwt".

Name of the wavelet filter to use in the decomposition. By default this is set
to "1a8", the Daubechies orthonormal compactly supported wavelet of length
L = 8 least asymmetric family.

Specifies the depth of the decomposition. This must be a number less than or
equal to log(length(z), 2).
Either "dwt” or "modwt”.
Character string specifying the boundary condition. If boundary=="periodic"

the default and only method implemented, then the matrix you decompose is
assumed to be periodic on its defined interval.

50 mult.loc

Details

This code implements a three-dimensional multiresolution analysis by performing the one-dimensional
pyramid algorithm (Mallat 1989) on each dimension of the input array. Either the DWT or MODWT
may be used to compute the multiresolution analysis, which is an additive decomposition of the
original array.

Value

List structure containing the filter triplets associated with the multiresolution analysis.

Author(s)
B. Whitcher

References

Mallat, S. G. (1989) A theory for multiresolution signal decomposition: the wavelet representation,
IEEE Transactions on Pattern Analysis and Machine Intelligence, 11, No. 7, 674-693.

Mallat, S. G. (1998) A Wavelet Tour of Signal Processing, Academic Press.

See Also
dwt. 3d, modwt. 3d

mult.loc Wavelet-based Testing and Locating for Variance Change Points

Description
This is the major subroutine for testing.hov, providing the workhorse algorithm to recursively
test and locate multiple variance changes in so-called long memory processes.

Usage

mult.loc(dwt.list, modwt.list, wf, level, min.coef, debug)

Arguments
dwt.list List of wavelet vector coefficients from the dwt.
modwt.list List of wavelet vector coefficients from the modwt.
wf Name of the wavelet filter to use in the decomposition.
level Specifies the depth of the decomposition.
min.coef Minimum number of wavelet coefficients for testing purposes.
debug Boolean variable: if set to TRUE, actions taken by the algorithm are printed to

the screen.

my.act 51

Details
For details see Section 9.6 of Percival and Walden (2000) or Section 7.3 in Gencay, Selcuk and
Whitcher (2001).

Value

Matrix.

Author(s)
B. Whitcher

References

Gencay, R., F. Selcuk and B. Whitcher (2001) An Introduction to Wavelets and Other Filtering
Methods in Finance and Economics, Academic Press.

Percival, D. B. and A. T. Walden (2000) Wavelet Methods for Time Series Analysis, Cambridge
University Press.

See Also

rotcumvar, testing. hov.

my.acf Autocovariance Functions via the Discrete Fourier Transform

Description
Computes the autocovariance function (ACF) for a time series or the cross-covariance function
(CCF) between two time series.
Usage
my.acf(x)
my.ccf(a, b)
Arguments

X,a,b time series

Details

The series is zero padded to twice its length before the discrete Fourier transform is applied. Only
the values corresponding to nonnegative lags are provided (for the ACF).

Value

The autocovariance function for all nonnegative lags or the cross-covariance function for all lags.

52 nile

Author(s)

B. Whitcher

Examples

data(ibm)
ibm.returns <- diff(log(ibm))
plot(1:1length(ibm.returns) - 1, my.acf(ibm.returns), type="h",
xlab="1lag", ylab="ACVS", main="Autocovariance Sequence for IBM Returns")

nile Nile River Minima

Description

Yearly minimal water levels of the Nile river for the years 622 to 1281, measured at the Roda gauge
near Cairo (Tousson, 1925, p. 366-385). The data are listed in chronological sequence by row.

The original Nile river data supplied by Beran only contained only 500 observations (622 to 1121).
However, the book claimed to have 660 observations (622 to 1281). The remaining observations
from the book were added, by hand, but the series still only contained 653 observations (622 to
1264).

Note, now the data consists of 663 observations (spanning the years 622-1284) as in original source
(Toussoun, 1925).

Usage

data(nile)

Format

A length 663 vector.

Source

Toussoun, O. (1925) M\’emoire sur I’Histoire du Nil, Volume 18 in M\’emoires a I’ Institut d’Egypte,
pp. 366-404.

References

Beran, J. (1994) Statistics for Long-Memory Processes, Chapman Hall: Englewood, N1J.

ortho.basis 53

ortho.basis Derive Orthonormal Basis from Wavelet Packet Tree

Description

An orthonormal basis for the discrete wavelet transform may be characterized via a disjoint par-
titioning of the frequency axis that covers [0, %) This subroutine produces an orthonormal basis
from a full wavelet packet tree.

Usage

ortho.basis(xtree)

Arguments

xtree is a vector whose entries are associated with a wavelet packet tree.

Details

A wavelet packet tree is a binary tree of Boolean variables. Parent nodes are removed if any of their
children exist.

Value

Boolean vector describing the orthonormal basis for the DWPT.

Author(s)
B. Whitcher

Examples

data(japan)
J <-4
wf <= "mb8"
japan.mra <- mra(log(japan), wf, J, boundary="reflection")
japan.nomean <-
ts(apply(matrix(unlist(japan.mra[-(J+1)]), ncol=J, byrow=FALSE), 1, sum),
start=1955, freg=4)
japan.nomean2 <- ts(japan.nomean[42:169], start=1965.25, freg=4)
plot(japan.nomean2, type="1")
japan.dwpt <- dwpt(japan.nomean2, wf, 6)
japan.basis <-
ortho.basis(portmanteau.test(japan.dwpt, p=0.01, type="other"))
Not implemented yet
par(mfrow=c(1,1))
plot.basis(japan.basis)

54 phase.shift

per Periodogram

Description

Computation of the periodogram via the Fast Fourier Transform (FFT).

Usage

per(z)

Arguments

z time series

Author(s)
Author: Jan Beran; modified: Martin Maechler, Date: Sep 1995.

phase.shift Phase Shift Wavelet Coefficients

Description

Wavelet coefficients are circularly shifted by the amount of phase shift induced by the wavelet
transform.

Usage

phase.shift(z, wf, inv = FALSE)
phase.shift.packet(z, wf, inv = FALSE)

Arguments

z DWT object

wf character string; wavelet filter used in DWT

inv Boolean variable; if inv=TRUE then the inverse phase shift is applied
Details

The center-of-energy argument of Hess-Nielsen and Wickerhauser (1996) is used to provide a flex-
ible way to circularly shift wavelet coefficients regardless of the wavelet filter used. The results are
not identical to those used by Percival and Walden (2000), but are more flexible.

phase.shift.packet is not yet implemented fully.

phase.shiftt.hilbert 55

Value

DWT (DWPT) object with coefficients circularly shifted.

Author(s)
B. Whitcher

References

Hess-Nielsen, N. and M. V. Wickerhauser (1996) Wavelets and time-frequency analysis, Proceed-
ings of the IEEE, 84, No. 4, 523-540.

Percival, D. B. and A. T. Walden (2000) Wavelet Methods for Time Series Analysis, Cambridge
University Press.

phase.shift.hilbert Phase Shift for Hilbert Wavelet Coefficients

Description

Wavelet coefficients are circularly shifted by the amount of phase shift induced by the discrete
Hilbert wavelet transform.

Usage

phase.shift.hilbert(x, wf)
phase.shift.hilbert.packet(x, wf)

Arguments
X Discete Hilbert wavelet transform (DHWT) object.
wf character string; Hilbert wavelet pair used in DHWT
Details

The "center-of-energy" argument of Hess-Nielsen and Wickerhauser (1996) is used to provide a
flexible way to circularly shift wavelet coefficients regardless of the wavelet filter used.

Value

DHWT (DHWPT) object with coefficients circularly shifted.

Author(s)
B. Whitcher

56 plot.dwt.2d

References

Hess-Nielsen, N. and M. V. Wickerhauser (1996) Wavelets and time-frequency analysis, Proceed-
ings of the IEEE, 84, No. 4, 523-540.

See Also

phase.shift

plot.dwt.2d Plot Two-dimensional Discrete Wavelet Transform

Description

Organizes the wavelet coefficients from a 2D DWT into a single matrix and plots it. The coarser
resolutions are nested within the lower-lefthand corner of the image.

Usage
S3 method for class 'dwt.2d'
plot(x, cex.axis = 1, plot = TRUE, ...)
Arguments
X input matrix (image)
cex.axis par plotting parameter that controls the size of the axis text
plot if plot = FALSE then the matrix of wavelet coefficients is returned, the default is
plot = TRUE

additional graphical parameters if necessary

Details

The wavelet coefficients from the DWT object (a list) are reorganized into a single matrix of the
same dimension as the original image and the result is plotted.

Value

Image plot.

Author(s)
B. Whitcher

See Also
dwt. 2d.

gmf 57

gmf Quadrature Mirror Filter

Description

Computes the quadrature mirror filter from a given filter.

Usage

gmf (g, low2high=TRUE)

Arguments
g Filter coefficients.
low2high Logical, default is TRUE which means a low-pass filter is input and a high-pass
filter is output. Setting low2high=F performs the inverse.
Details
None.
Value

Quadrature mirror filter.

Author(s)
B. Whitcher

References

Any basic signal processing text.

See Also

wave.filter.

Examples

Haar wavelet filter
g <- wave.filter("haar")$lpf
amf(g)

58 rotcumvar

rotcumvar Rotated Cumulative Variance

Description

Provides the normalized cumulative sums of squares from a sequence of coefficients with the diag-
onal line removed.

Usage

rotcumvar (x)

Arguments

X vector of coefficients to be cumulatively summed (missing values excluded)

Details

The rotated cumulative variance, when plotted, provides a qualitative way to study the time depen-
dence of the variance of a series. If the variance is stationary over time, then only small deviations
from zero should be present. If on the other hand the variance is non-stationary, then large de-
partures may exist. Formal hypothesis testing may be performed based on boundary crossings of
Brownian bridge processes.

Value

Vector of coefficients that are the sumulative sum of squared input coefficients.

Author(s)

B. Whitcher

References

Gencay, R., F. Selcuk and B. Whitcher (2001) An Introduction to Wavelets and Other Filtering
Methods in Finance and Economics, Academic Press.

Percival, D. B. and A. T. Walden (2000) Wavelet Methods for Time Series Analysis, Cambridge
University Press.

Selesnick 59

Selesnick Miscellaneous Functions for Dual-Tree Wavelet Software

Description

Miscellaneous functions for dual-tree wavelet software.

Usage

cshift(x, m)
cshift2D(x, m)

pm(a, b)
Arguments
X N-point vector
m amount of shift
a,b input parameters
Value
y vector z will be shifed by m samples to the left or matrix = will be shifed by m
samples down.
u (a+b)/sqrt(2)
v (a —b)/sqrt(2)
Author(s)

Matlab: S. Cai, K. Li and I. Selesnick; R port: B. Whitcher

References

WAVELET SOFTWARE AT POLYTECHNIC UNIVERSITY, BROOKLYN, NY
http://eeweb.poly.edu/iselesni/WaveletSoftware/

http://eeweb.poly.edu/iselesni/WaveletSoftware/

60 shift.2d

shift.2d Circularly Shift Matrices from a 2D MODWT

Description

Compute phase shifts for wavelet sub-matrices based on the “center of energy” argument of Hess-
Nielsen and Wickerhauser (1996).

Usage

shift.2d(z, inverse=FALSE)

Arguments

z Two-dimensional MODWT object

inverse Boolean value on whether to perform the forward or inverse operation.
Details

The "center of energy" technique of Wickerhauser and Hess-Nielsen (1996) is employed to find
circular shifts for the wavelet sub-matrices such that the coefficients are aligned with the original
series. This corresponds to applying a (near) linear-phase filtering operation.

Value

Two-dimensional MODWT object with circularly shifted coefficients.

Author(s)

Brandon Whitcher

References

Hess-Nielsen, N. and M. V. Wickerhauser (1996) Wavelets and time-frequency analysis, Proceed-
ings of the IEEE, 84, No. 4, 523-540.

Percival, D. B. and A. T. Walden (2000) Wavelet Methods for Time Series Analysis, Cambridge
University Press.

See Also

phase.shift, modwt. 2d.

sine.taper 61

Examples

n <- 512
G1 <- G2 <- dnorm(seq(-n/4, n/4, length=n))
G <- 100 * zapsmall(outer(G1, G2))
G <- modwt.2d(G, wf="1la8", J=6)
k <- 50
xr <= yr <- trunc(n/2) + (-k:k)
par(mfrow=c(3,3), mar=c(1,1,2,1), pty="s")
for (j in names(G)[1:9]) {
image(GL[jJ11[xr,yr], col=rainbow(64), axes=FALSE, main=j)
3
Gs <- shift.2d(G)
for (j in names(G)[1:9]1) {
image(Gs[[j11[xr,yrl, col=rainbow(64), axes=FALSE, main=j)
}

sine. taper Computing Sinusoidal Data Tapers

Description

Computes sinusoidal data tapers directly from equations.

Usage

sine.taper(n, k)

Arguments
length of data taper(s)
k number of data tapers
Details

See reference.

Value

A vector or matrix of data tapers (cols = tapers).

Author(s)
B. Whitcher

References

Riedel, K. S. and A. Sidorenko (1995) Minimum bias multiple taper spectral estimation, /[EEE
Transactions on Signal Processing, 43, 188-195.

62 Spectral Density Functions

See Also

dpss. taper.

Spectral Density Functions
Spectral Density Functions for Long-Memory Processes

Description

Draws the spectral density functions (SDFs) for standard long-memory processes including frac-
tional difference (FD), seasonal persistent (SP), and seasonal fractional difference (SFD) processes.

Usage

fdp.sdf(freq, d, sigma2 = 1)

spp.sdf(freq, d, fG, sigma2 = 1)
spp2.sdf(freq, d1, f1, d2, f2, sigma2 = 1)
sfd.sdf(freq, s, d, sigma2 = 1)

Arguments
freq vector of frequencies, normally from O to 0.5
d,d1,d2 fractional difference parameter
fG,f1,f2 Gegenbauer frequency
s seasonal parameter
sigma2 innovations variance
Value

The power spectrum from an FD, SP or SFD process.

Author(s)

Brandon Whitcher

See Also

fdp.mle, spp.mle.

spin.covariance 63

Examples

dB <- function(x) 10 * logl0(x)

fdp.main <- expression(paste(”"FD", group(”"(",d==0.4,")")))
sfd.main <- expression(paste("SFD", group("(",list(s==12, d==0.4),")")))
spp.main <- expression(paste("”SPP",

group("(",list(delta==0.4, f[G1==1/12),")")))

freq <- 0:512/1024

par(mfrow=c(2,2), mar=c(5-1,4,4-1,2), col.main="darkred")

plot(freq, dB(fdp.sdf(freq, .4)), type="1", xlab="frequency"”,
ylab="spectrum (dB)", main=fdp.main)

plot(freq, dB(spp.sdf(freq, .4, 1/12)), type="1", xlab="frequency",
ylab="spectrum (dB)", font.main=1, main=spp.main)

plot(freq, dB(sfd.sdf(freq, 12, .4)), type="1", xlab="frequency",
ylab="spectrum (dB)", main=sfd.main)

spin.covariance Compute Wavelet Cross-Covariance Between Two Time Series

Description

Computes wavelet cross-covariance or cross-correlation between two time series.

Usage

spin.covariance(x, y, lag.max = NA)
spin.correlation(x, y, lag.max = NA)

Arguments

X first time series

y second time series, same length as x

lag.max maximum lag to compute cross-covariance (correlation)
Details

See references.

Value

List structure holding the wavelet cross-covariances (correlations) according to scale.

Author(s)
B. Whitcher

64 spin.covariance

References

Gencay, R., F. Selcuk and B. Whitcher (2001) An Introduction to Wavelets and Other Filtering
Methods in Finance and Economics, Academic Press.

Whitcher, B., P. Guttorp and D. B. Percival (2000) Wavelet analysis of covariance with application
to atmospheric time series, Journal of Geophysical Research, 105, No. D11, 14,941-14,962.

See Also

wave.covariance, wave.correlation.

Examples

Figure 7.9 from Gencay, Selcuk and Whitcher (2001)
data(exchange)
returns <- diff(log(exchange))
returns <- ts(returns, start=1970, freq=12)
wf <- "d4"
demusd.modwt <- modwt(returns[,”DEM.USD"], wf, 8)
demusd.modwt.bw <- brick.wall(demusd.modwt, wf)
jpyusd.modwt <- modwt(returns[,"JPY.USD"], wf, 8)
jpyusd.modwt.bw <- brick.wall(jpyusd.modwt, wf)
n <- dim(returns)[1]
J<-6
Imax <- 36
returns.cross.cor <- NULL
for(i in 1:J7) {
blah <- spin.correlation(demusd.modwt.bw[[i]], jpyusd.modwt.bw[[i]], 1lmax)
returns.cross.cor <- cbind(returns.cross.cor, blah)
3
returns.cross.cor <- ts(as.matrix(returns.cross.cor), start=-36, freq=1)
dimnames(returns.cross.cor) <- list(NULL, paste(”Level”, 1:J))
lags <- length(-1lmax:1lmax)
lower.ci <- tanh(atanh(returns.cross.cor) - gnorm(@.975) /
sqrt(matrix(trunc(n/2*(1:J)), nrow=lags, ncol=J, byrow=TRUE)
-3
upper.ci <- tanh(atanh(returns.cross.cor) + gnorm(@.975) /
sqrt(matrix(trunc(n/2*(1:J)), nrow=lags, ncol=J, byrow=TRUE)
-3
par(mfrow=c(3,2), las=1, pty="m", mar=c(5,4,4,2)+.1)
for(i in J:1) {
plot(returns.cross.cor[,i], ylim=c(-1,1), xaxt="n", xlab="Lag (months)",
ylab="", main=dimnames(returns.cross.cor)[[2]][i])
axis(side=1, at=seq(-36, 36, by=12))
lines(lower.cil[,i], 1ty=1, col=2)
lines(upper.cil[,i], 1lty=1, col=2)
abline(h=0,v=0)

spp.mle 65

spp.mle Wavelet-based Maximum Likelihood Estimation for Seasonal Persis-
tent Processes

Description
Parameter estimation for a seasonal persistent (seasonal long-memory) process is performed via
maximum likelihood on the wavelet coefficients.

Usage

spp.mle(y, wf, J=log(length(y),2)-1, p=0.01, frac=1)
spp2.mle(y, wf, J=log(length(y),2)-1, p=0.01, dyadic=TRUE, frac=1)

Arguments
y Not necessarily dyadic length time series.
wf Name of the wavelet filter to use in the decomposition. See wave.filter for
those wavelet filters available.
J Depth of the discrete wavelet packet transform.
p Level of significance for the white noise testing procedure.
dyadic Logical parameter indicating whether or not the original time series is dyadic in
length.
frac Fraction of the time series that should be used in constructing the likelihood
function.
Details

The variance-covariance matrix of the original time series is approximated by its wavelet-based
equivalent. A Whittle-type likelihood is then constructed where the sums of squared wavelet coeffi-
cients are compared to bandpass filtered version of the true spectral density function. Minimization
occurs for the fractional difference parameter d and the Gegenbauer frequency f, while the inno-
vations variance is subsequently estimated.
Value

List containing the maximum likelihood estimates (MLEs) of d, f& and o2, along with the value of
the likelihood for those estimates.

Author(s)
B. Whitcher

References

Whitcher, B. (2004) Wavelet-based estimation for seasonal long-memory processes, Technometrics,
46, No. 2, 225-238.

66 spp.var

See Also
fdp.mle

spp.var Variance of a Seasonal Persistent Process

Description

Computes the variance of a seasonal persistent (SP) process using a hypergeometric series expan-
sion.

Usage

spp.var(d, fG, sigma2 = 1)
Hypergeometric(a, b, c, z)

Arguments

d Fractional difference parameter.

fG Gegenbauer frequency.

sigma2 Innovations variance.

a,b,c,z Parameters for the hypergeometric series.
Details

See Lapsa (1997). The subroutine to compute a hypergeometric series was taken from Numerical
Recipes in C.
Value

The variance of an SP process.

Author(s)
B. Whitcher

References

Lapsa, PM. (1997) Determination of Gegenbauer-type random process models. Signal Processing
63, 73-90.

Press, W.H., S.A. Teukolsky, W.T. Vetterling and B.P. Flannery (1992) Numerical Recipes in C, 2nd
edition, Cambridge University Press.

squared.gain

67

squared.gain

Squared Gain Function of a Filter

Description

Produces the modulus squared of the Fourier transform for a given filtering sequence.

Usage

squared.gain(wf

Arguments

wf.name

filter.seq

Details

.name, filter.seq = "L", n = 512)

Character string of wavelet filter.

Character string of filter sequence. H means high-pass filtering and L means
low-pass filtering. Sequence is read from right to left.

Length of zero-padded filter. Frequency resolution will be n/2+1.

Uses cascade subroutine to compute the squared gain function from a given filtering sequence.

Value

Squared gain function.

Author(s)
B. Whitcher

See Also

wave.filter, wavelet.filter.

Examples

par(mfrow=c(2,2))
f.seq <- "H"

plot(@:256/512, squared.gain(”d4", f.seq), type="1", ylim=c(0,2),
xlab="frequency”, ylab="L = 4", main="Level 1")

lines(@:256/512,
lines(@:256/512,

squared.gain("fk4", f.seq), col=2)
squared.gain("mb4", f.seq), col=3)

abline(v=c(1,2)/4, lty=2)
legend(-.02, 2, c("Daubechies”, "Fejer-Korovkin”, "Minimum-Bandwidth"),

1ty=1, col
f.seq <- "HL"

=1:3, bty="n", cex=1)

plot(@:256/512, squared.gain(”d4", f.seq), type="1", ylim=c(90,4),

xlab="frequency”, ylab=

nn

, main="Level 2")

68 stackPlot

lines(0:256/512, squared.gain(”"fk4", f.seq), col=2)

lines(0:256/512, squared.gain("mb4", f.seq), col=3)

abline(v=c(1,2)/8, lty=2)

f.seq <= "H"

plot(@:256/512, squared.gain("”d8", f.seq), type="1", ylim=c(9,2),
xlab="frequency”, ylab="L = 8", main="")

lines(0:256/512, squared.gain(”"fk8", f.seq), col=2)

lines(@:256/512, squared.gain("mb8", f.seq), col=3)

abline(v=c(1,2)/4, lty=2)

f.seq <- "HL"

plot(@:256/512, squared.gain(”d8", f.seq), type="1", ylim=c(90,4),
xlab="frequency”, ylab="", main="")

lines(0:256/512, squared.gain("fk8", f.seq), col=2)

lines(@:256/512, squared.gain("mb8", f.seq), col=3)

abline(v=c(1,2)/8, lty=2)

stackPlot Stack Plot

Description

Stack plot of an object. This function attempts to mimic a function called stack.plot in S+ WAVELETS.
It is mostly a hacked version of plot.tsin R.

Usage

stackPlot(x, plot.type = c("multiple”, "single"), panel = lines,
log = "", col = par("col”), bg = NA, pch = par(”"pch"), cex = par("cex"),
1ty = par("1ty"”), 1lwd = par(”"lwd"”), ann = par("ann"), xlab = "Time",
main = NULL, oma = c(6, @, 5, @), layout = NULL,

same.scale = 1:dim(x)[2], ...)
Arguments
X ts object
layout Doublet defining the dimension of the panel. If not specified, the dimensions are

chosen automatically.
same.scale Vector the same length as the number of series to be plotted. If not specified, all

panels will have unique axes.
plot.type,panel,log,col,bg,pch,cex,lty,lwd,ann,xlab,main,oma, ...
See plot.ts.
Details

Produces a set of plots, one for each element (column) of x.

Author(s)
Brandon Whitcher

testing.hov 69

testing.hov Testing for Homogeneity of Variance

Description
A recursive algorithm for detecting and locating multiple variance change points in a sequence of
random variables with long-range dependence.

Usage
testing.hov(x, wf, J, min.coef=128, debug=FALSE)

Arguments
X Sequence of observations from a (long memory) time series.
wf Name of the wavelet filter to use in the decomposition.
J Specifies the depth of the decomposition. This must be a number less than or
equal to log(length(z), 2).
min.coef Minimum number of wavelet coefficients for testing purposes. Empirical results
suggest that 128 is a reasonable number in order to apply asymptotic critical
values.
debug Boolean variable: if set to TRUE, actions taken by the algorithm are printed to
the screen.
Details

For details see Section 9.6 of Percival and Walden (2000) or Section 7.3 in Gencay, Selcuk and
Whitcher (2001).

Value

Matrix whose columns include (1) the level of the wavelet transform where the variance change
occurs, (2) the value of the test statistic, (3) the DWT coefficient where the change point is located,
(4) the MODWT coefficient where the change point is located. Note, there is currently no checking
that the MODWT is contained within the associated support of the DWT coefficient. This could
lead to incorrect estimates of the location of the variance change.

Author(s)
B. Whitcher

References
Gencay, R., F. Selcuk and B. Whitcher (2001) An Introduction to Wavelets and Other Filtering
Methods in Finance and Economics, Academic Press.

Percival, D. B. and A. T. Walden (2000) Wavelet Methods for Time Series Analysis, Cambridge
University Press.

70 Thresholding

See Also

dwt, modwt, rotcumvar, mult.loc.

Thresholding Wavelet Shrinkage via Thresholding

Description

Perform wavelet shrinkage using data-analytic, hybrid SURE, manual, SURE, or universal thresh-
olding.

Usage

da.thresh(wc, alpha = .05, max.level = 4, verbose = FALSE, return.thresh = FALSE)
hybrid. thresh(wc, max.level = 4, verbose = FALSE, seed = 0)

manual.thresh(wc, max.level = 4, value, hard = TRUE)

sure.thresh(wc, max.level = 4, hard = TRUE)

universal.thresh(wc, max.level = 4, hard = TRUE)

universal.thresh.modwt (wc, max.level = 4, hard = TRUE)

Arguments
e wavelet coefficients
alpha level of the hypothesis tests
max.level maximum level of coefficients to be affected by threshold
verbose if verbose=TRUE then information is printed to the screen
value threshold value (only utilized in manual. thresh)
hard Boolean value, if hard=F then soft thresholding is used
seed sets random seed (only utilized in hybrid. thresh)

return.thresh if return.thresh=TRUE then the vector of threshold values is returned, other-
wise the surviving wavelet coefficients are returned
Details

An extensive amount of literature has been written on wavelet shrinkage. The functions here rep-
resent the most basic approaches to the problem of nonparametric function estimation. See the
references for further information.

Value

The default output is a list structure, the same length as was input, containing only those wavelet
coefficients surviving the threshold.

Author(s)
B. Whitcher (some code taken from R. Todd Ogden)

tourism 71

References
Gencay, R., F. Selcuk and B. Whitcher (2001) An Introduction to Wavelets and Other Filtering
Methods in Finance and Economics, Academic Press.
Ogden, R. T. (1996) Essential Wavelets for Statistical Applications and Data Analysis, Birkhauser.

Percival, D. B. and A. T. Walden (2000) Wavelet Methods for Time Series Analysis, Cambridge
University Press.

Vidakovic, B. (1999) Statistical Modeling by Wavelets, John Wiley \& Sons.

tourism U.S. Tourism

Description

Quarterly U.S. tourism figures from 1960:1 to 1999:4.

Usage

data(tourism)

Format

A vector containing 160 observations.

Source

Unknown.

References

Gencay, R., F. Selcuk and B. Whitcher (2001) An Introduction to Wavelets and Other Filtering
Methods in Finance and Economics, Academic Press.

unemploy U.S. Unemployment

Description

Monthly U.S. unemployment figures from 1948:1 to 1999:12.

Usage

data(unemploy)

Format

A vector containing 624 observations.

72

Source

Unknown.

References

up.sample

Gencay, R., F. Selcuk and B. Whitcher (2001) An Introduction to Wavelets and Other Filtering

Methods in Finance and Economics, Academic Press.

up.sample Upsampling of a vector

Description

Upsamples a given vector.

Usage

up.sample(x, f, y = NA)

Arguments
X vector of observations
f frequency of upsampling; e.g, 2, 4, etc.
y value to upsample with; e.g., NA, 0, etc.
Value

A vector twice its length.

Author(s)

B. Whitcher

References

Any basic signal processing text.

wave.filter 73

wave.filter Select a Wavelet Filter

Description

Converts name of wavelet filter to filter coefficients.

Usage

wave.filter(name)

Arguments

name Character string of wavelet filter.

Details

Simple switch statement selects the appropriate filter.

Value

List containing the following items:

L Length of the wavelet filter.
hpf High-pass filter coefficients.
1pf Low-pass filter coefficients.
Author(s)
B. Whitcher
References

Daubechies, 1. (1992) Ten Lectures on Wavelets, CBMS-NSF Regional Conference Series in Ap-
plied Mathematics, SIAM: Philadelphia.

Doroslovacki (1998) On the least asymmetric wavelets, IEEE Transactions for Signal Processing,
46, No. 4, 1125-1130.

Morris and Peravali (1999) Minimum-bandwidth discrete-time wavelets, Signal Processing, 76, No.
2, 181-193.

Nielsen, M. (2000) On the Construction and Frequency Localization of Orthogonal Quadrature
Filters, Journal of Approximation Theory, 108, No. 1, 36-52.

See Also

wavelet.filter, squared.gain.

74 wave.variance

wave.variance Wavelet Analysis of Univariate/Bivariate Time Series

Description
Produces an estimate of the multiscale variance, covariance or correlation along with approximate
confidence intervals.

Usage

wave.variance(x, type="eta3", p=0.025)
wave.covariance(x, y)
wave.correlation(x, y, N, p=0.975)

Arguments
X first time series
y second time series
type character string describing confidence interval calculation; valid methods are
gaussian, etal, eta2, eta3, nongaussian
(one minus the) two-sided p-value for the confidence interval
length of time series
Details

The time-independent wavelet variance is basically the average of the squared wavelet coefficients
across each scale. As shown in Percival (1995), the wavelet variance is a scale-by-scale decompo-
sition of the variance for a stationary process, and certain non-stationary processes.

Value

Matrix with as many rows as levels in the wavelet transform object. The first column provides the
point estimate for the wavelet variance, covariance, or correlation followed by the lower and upper
bounds from the confidence interval.

Author(s)
B. Whitcher

References

Gencay, R., F. Selcuk and B. Whitcher (2001) An Introduction to Wavelets and Other Filtering
Methods in Finance and Economics, Academic Press.
Percival, D. B. (1995) Biometrika, 82, No. 3, 619-631.

Percival, D. B. and A. T. Walden (2000) Wavelet Methods for Time Series Analysis, Cambridge
University Press.

wavelet.filter 75

Whitcher, B., P. Guttorp and D. B. Percival (2000) Wavelet Analysis of Covariance with Application
to Atmospheric Time Series, Journal of Geophysical Research, 105, No. D11, 14,941-14,962.

Examples

Figure 7.3 from Gencay, Selcuk and Whitcher (2001)

data(ar1)

arl.modwt <- modwt(arl, "haar", 6)

arl.modwt.bw <- brick.wall(arl.modwt, "haar")

arl.modwt.var2 <- wave.variance(arl.modwt.bw, type="gaussian")

arl.modwt.var <- wave.variance(arl.modwt.bw, type="nongaussian")

par(mfrow=c(1,1), las=1, mar=c(5,4,4,2)+.1)

matplot(2*(0:5), arl.modwt.var2[-7,]1, type="b", log="xy",
xaxt="n", ylim=c(.025, 6), pch="%LU", 1lty=1, col=c(1,4,4),
xlab="Wavelet Scale”, ylab="")

matlines(2”(0:5), as.matrix(arl.modwt.var)[-7,2:3], type="b",

pch="LU", lty=1, col=3)

axis(side=1, at=2"(0:5))

legend(1, 6, c("Wavelet variance”, "Gaussian CI", "Non-Gaussian CI"),
1ty=1, col=c(1,4,3), bty="n")

Figure 7.8 from Gencay, Selcuk and Whitcher (2001)

data(exchange)

returns <- diff(log(as.matrix(exchange)))

returns <- ts(returns, start=1970, freq=12)

wf <- "d4"

J <-6

demusd.modwt <- modwt(returns[,"DEM.USD"], wf, J)

demusd.modwt.bw <- brick.wall(demusd.modwt, wf)

jpyusd.modwt <- modwt(returns[,"”JPY.USD"], wf, J)

jpyusd.modwt.bw <- brick.wall(jpyusd.modwt, wf)

returns.modwt.cov <- wave.covariance(demusd.modwt.bw, jpyusd.modwt.bw)

par(mfrow=c(1,1), las=0, mar=c(5,4,4,2)+.1)

matplot(2*(0:(J-1)), returns.modwt.cov[-(J+1),]1, type="b", log="x",
pch="%LU", xaxt="n", 1lty=1, col=c(1,4,4), xlab="Wavelet Scale”,
ylab="Wavelet Covariance")

axis(side=1, at=2"(0:7))

abline(h=0)

returns.modwt.cor <- wave.correlation(demusd.modwt.bw, jpyusd.modwt.bw,
N = dim(returns)[1])

par(mfrow=c(1,1), las=0, mar=c(5,4,4,2)+.1)

matplot(2*(0:(J-1)), returns.modwt.cor[-(J+1),]1, type="b", log="x",
pch="%LU", xaxt="n", 1lty=1, col=c(1,4,4), xlab="Wavelet Scale”,
ylab="Wavelet Correlation")

axis(side=1, at=2"(0:7))

abline(h=0)

wavelet.filter Higher-Order Wavelet Filters

76 wavelet.filter

Description

Create a wavelet filter at arbitrary scale.

Usage

wavelet.filter(wf.name, filter.seq = "L", n = 512)

Arguments
wf.name Character string of wavelet filter.
filter.seq Character string of filter sequence. H means high-pass filtering and L means
low-pass filtering. Sequence is read from right to left.
n Length of zero-padded filter. Frequency resolution will be n/2+1.
Details

Uses cascade subroutine to compute higher-order wavelet coefficient vector from a given filtering
sequence.

Value

Vector of wavelet coefficients.

Author(s)

B. Whitcher

References

Bruce, A. and H.-Y. Gao (1996). Applied Wavelet Analysis with S-PLUS, Springer: New York.

Doroslovacki, M. L. (1998) On the least asymmetric wavelets, I[EEE Transactions on Signal Pro-
cessing, 46, No. 4, 1125-1130.

Daubechies, 1. (1992) Ten Lectures on Wavelets, CBMS-NSF Regional Conference Series in Ap-
plied Mathematics, SIAM: Philadelphia.

Morris and Peravali (1999) Minimum-bandwidth discrete-time wavelets, Signal Processing, 76, No.
2, 181-193.

Nielsen, M. (2001) On the Construction and Frequency Localization of Finite Orthogonal Quadra-
ture Filters, Journal of Approximation Theory, 108, No. 1, 36-52.

See Also

squared.gain, wave.filter.

wpt.test 77

Examples

Figure 4.14 in Gencay, Selcuk and Whitcher (2001)

par(mfrow=c(3,1), mar=c(5-2,4,4-1,2))

f.seq <- "HLLLLL"

plot(c(rep(0,33), wavelet.filter("mb4", f.seq), rep(9,33)), type="1",
xlab="" ylab="", main="D(4) in black, MB(4) in red")

lines(c(rep(0,33), wavelet.filter("d4", f.seq), rep(0,33)), col=2)

plot(c(rep(0,35), -wavelet.filter("mb8", f.seq), rep(0,35)), type="1",
xlab="" ylab="", main="D(8) in black, -MB(8) in red")

lines(c(rep(0,35), wavelet.filter("d8", f.seq), rep(0,35)), col=2)

plot(c(rep(0,39), wavelet.filter("mb16"”, f.seq), rep(0,39)), type="1",
xlab="" ylab="", main="D(16) in black, MB(16) in red")

lines(c(rep(0,39), wavelet.filter("d16", f.seq), rep(9,39)), col=2)

wpt.test Testing the Wavelet Packet Tree for White Noise

Description

A wavelet packet tree, from the discrete wavelet packet transform (DWPT), is tested node-by-node
for white noise. This is the first step in selecting an orthonormal basis for the DWPT.

Usage

cpgram.test(y, p = 0.05, taper = 0.1)

css.test(y)

entropy.test(y)

portmanteau.test(y, p = 0.05, type = "Box-Pierce")

Arguments

y wavelet packet tree (from the DWPT)

p significance level

taper weight of cosine bell taper (cpgram. test only)

type "Box-Pierce"” and other recognized (portmanteau. test only)
Details

Top-down recursive testing of the wavelet packet tree is

Value

Boolean vector of the same length as the number of nodes in the wavelet packet tree.

Author(s)
B. Whitcher

78 xbox

References

Brockwell and Davis (1991) Time Series: Theory and Methods, (2nd. edition), Springer-Verlag.

Brown, Durbin and Evans (1975) Techniques for testing the constancy of regression relationships
over time, Journal of the Royal Statistical Society B, 37, 149-163.

Percival, D. B., and A. T. Walden (1993) Spectral Analysis for Physical Applications: Multitaper
and Conventional Univariate Techniques, Cambridge University Press.

See Also

ortho.basis.

Examples

data(mexm)

J<-6

wf <- "1a8"

mexm.dwpt <- dwpt(mexm[-(1:4)71, wf, J)

Not implemented yet

plot.dwpt(x.dwpt, J)

mexm.dwpt.bw <- dwpt.brick.wall(mexm.dwpt, wf, 6, method="dwpt")
mexm.tree <- ortho.basis(portmanteau.test(mexm.dwpt.bw, p=0.025))
Not implemented yet

plot.basis(mexm.tree)

xbox Image with Box and X

Description

wbox(i,§) = Iji=n/a, 3n/4, j; nja<j<sn/4] + Inja<i<sn/a; j=n/4, 3n/4, i]

Usage
data(xbox)

Format

A 128 x 128 matrix.

Source

S+WAVELETS.

References

Bruce, A., and H.-Y. Gao (1996) Applied Wavelet Analysis with S-PLUS, Springer: New York.

Index

+Topic datasets dwt. 3d, 29
Andel, 3 Farras, 30
arl, 4 fdp.mle, 31
barbara, 5 find.adaptive.basis, 32
blocks, 7 Hilbert, 34
cpi, 9 hilbert.filter, 35
dau, 10 hosking.sim, 36
doppler, 12 HWP Analysis, 37
exchange, 30 modwt, 41
heavisine, 33 modwt. 2d, 43
ibm, 38 modwt . 3d, 45
japan’ 39 mra, 45
jumpsine, 39 mra.2d, 47
kobe, 40 mra.3d, 49
linchirp, 40 mult.loc, 50
mexm, 41 my.acf, 51
nile, 52 ortho.basis, 53
tourism, 71 per, 54 .
unemploy, 71 phase.shlft, 54

phase.shift.hilbert, 55
plot.dwt.2d, 56

gmf, 57

rotcumvar, 58

xbox, 78
+Topic hplot
stackPlot, 68

*pr;;$3— ass variance, 4 Setesnick 59
: p) shift.2d, 60
basis, 6

sine. taper, 61

Spectral Density Functions, 62
spin.covariance, 63

spp.mle, 65

spp.var, 66

squared.gain, 67
testing.hov, 69

brick.wall, 7

convolve2D, 8
denoise.2d, 10

dpss. taper, 12

Dual-tree Filter Banks, 14
dualfilti, 16

Dualtree, 17 Thresholding, 70
Dualtree Complex, 19 up.sample, 72
dwpt, 20 wave.filter, 73
dwpt.2d, 22 wave.variance, 74
dwpt.boot, 23 wavelet.filter, 75
dwpt.sim, 24 wpt.test, 77

dwt, 25

dwt. 2d, 28 acvs.andel1@ (Andel), 3

79

80 INDEX

acvs.andel11 (Andel), 3
acvs.andel8 (Andel), 3
acvs.andel9 (Andel), 3

dwpt.brick.wall (brick.wall), 7
dwpt.sim, 24, 24, 33
dwt, 7, 21, 25, 43, 46, 70

afb, 18, 31 dwt.2d, 23, 28, 44, 48, 56
afb (Dual-tree Filter Banks), 14 dwt. 3d, 29, 50
afb2D, 19 dwt.hilbert (Hilbert), 34
afb2D (Dual-tree Filter Banks), 14
Andel, 3 entropy.test (wpt.test), 77
AntonB (dualfilt1), 16 exchange, 30
aril, 4
Farras, 30
Band-pass variance, 4 farras, 18, 19

bandpass. fdp (Band-pass variance), 4
bandpass. spp (Band-pass variance), 4
bandpass. spp2 (Band-pass variance), 4
bandpass.var.spp (Band-pass variance), 4

farras (Farras), 30

fdp.mle, 31, 62, 66

fdp.sdf (Spectral Density Functions), 62
find.adaptive.basis, 32

barbara, 5

basis, 6

bishrink (Thresholding), 70
blocks, 7

brick.wall, 7

convolve, 9, 18

convolve2D, 8
cpgram. test (wpt.test), 77

cpi, 9

cplxdual2D (Dualtree Complex), 19
cshift, I8

cshift (Selesnick), 59

cshift2D (Selesnick), 59

css.test (wpt.test), 77

da. thresh (Thresholding), 70
dau, 10

denoise. 2d, 10

denoise.dwt.2d (denoise.2d), 10
denoise.modwt.2d (denoise. 2d), 10
doppler, 12

dpss. taper, 12, 62

Dual-tree Filter Banks, 14
dualfilti, 16, 37

Dualtree, 17

dualtree, 16, 31

dualtree (Dualtree), 17
Dualtree Complex, 19
dualtree2D (Dualtree), 17
dwpt, 6, 7, 20

dwpt. 2d, 22

dwpt.boot, 23

FSfarras, 18, 19
FSfarras (Farras), 30

heavisine, 33

Hilbert, 34
hilbert.filter, 34, 35, 38
hosking.sim, 25, 36

HWP Analysis, 37

hybrid. thresh (Thresholding), 70
Hypergeometric (spp.var), 66

ibm, 38

icplxdual2D (Dualtree Complex), 19
idualtree (Dualtree), 17
idualtree2D (Dualtree), 17
idwpt (dwpt), 20

idwpt.2d (dwpt.2d), 22

idwt, 43

idwt (dwt), 25

idwt.2d (dwt.2d), 28

idwt.3d (dwt.3d), 29
idwt.hilbert (Hilbert), 34
imodwt (modwt), 41

imodwt.2d (modwt. 2d), 43
imodwt. 3d (modwt. 3d), 45
imodwt.hilbert (Hilbert), 34

japan, 39
jumpsine, 39

kobe, 40

linchirp, 40

INDEX

manual.thresh (Thresholding), 70
mexm, 41

modhwt.coh (HWP Analysis), 37
modhwt.phase (HWP Analysis), 37
modwpt, 7, 21

modwpt (dwpt), 20
modwpt.hilbert (Hilbert), 34
modwt, 7, 27, 41, 46, 70

modwt. 2d, 23, 28, 43, 48, 60
modwt . 3d, 45, 50

modwt.hilbert (Hilbert), 34
mra, 27, 43, 45

mra.2d, 47

mra. 3d, 49

mult.loc, 50, 70

my.acf, 51

my.ccf (my.acf), 51

nile, 52
ortho.basis, 53, 78

per, 54

phase.shift, 54, 56, 60
phase.shift.hilbert, 55
plot.dwt.2d, 56

pm (Selesnick), 59
portmanteau. test (wpt.test), 77

gmf, 57
rotcumvar, 51, 58, 70

Selesnick, 59

sfb, 18

sfb (Dual-tree Filter Banks), 14
sfb2D, 19

sfb2D (Dual-tree Filter Banks), 14

sfd.sdf (Spectral Density Functions), 62

shift.2d, 44, 60

sine.taper, 13,61

soft (Thresholding), 70

Spectral Density Functions, 62
spin.correlation (spin.covariance), 63
spin.covariance, 63

spp.mle, 24, 62, 65

spp.sdf (Spectral Density Functions), 62

spp.var, 66
spp2.mle (spp.mle), 65

81

spp2.sdf (Spectral Density Functions),
62

squared.gain, 67, 73, 76

stackPlot, 68

sure.thresh (Thresholding), 70

testing.hov, 50, 51, 69
Thresholding, 11,70
tourism, 71

unemploy, 71
universal.thresh (Thresholding), 70
up.sample, 72

wave.correlation, 64

wave.correlation (wave.variance), 74

wave.covariance, 64

wave.covariance (wave.variance), 74

wave.filter, 21, 23,25, 31, 35,57, 65, 67,
73,76

wave.variance, 74

wavelet.filter, 67, 73,75

wpt.test, 77

xbox, 78

	Andel
	ar1
	Band-pass variance
	barbara
	basis
	blocks
	brick.wall
	convolve2D
	cpi
	dau
	denoise.2d
	doppler
	dpss.taper
	Dual-tree Filter Banks
	dualfilt1
	Dualtree
	Dualtree Complex
	dwpt
	dwpt.2d
	dwpt.boot
	dwpt.sim
	dwt
	dwt.2d
	dwt.3d
	exchange
	Farras
	fdp.mle
	find.adaptive.basis
	heavisine
	Hilbert
	hilbert.filter
	hosking.sim
	HWP Analysis
	ibm
	japan
	jumpsine
	kobe
	linchirp
	mexm
	modwt
	modwt.2d
	modwt.3d
	mra
	mra.2d
	mra.3d
	mult.loc
	my.acf
	nile
	ortho.basis
	per
	phase.shift
	phase.shift.hilbert
	plot.dwt.2d
	qmf
	rotcumvar
	Selesnick
	shift.2d
	sine.taper
	Spectral Density Functions
	spin.covariance
	spp.mle
	spp.var
	squared.gain
	stackPlot
	testing.hov
	Thresholding
	tourism
	unemploy
	up.sample
	wave.filter
	wave.variance
	wavelet.filter
	wpt.test
	xbox
	Index

