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1 Introduction

In the literature of cooperative games, the notion of power index [1–3] has been widely
studied to analyze the “in昀氀uence” of individuals taking into account their ability to force
a decision within groups or coalitions. In practical situations, however, the information
concerning the strength of coalitions is hardly quanti昀椀able. So, any attempt to numer-
ically represent the in昀氀uence of groups and individuals clashes with the complex and
multi-attribute nature of the problem and it seems more realistic to represent collec-
tive decision-making mechanisms using an ordinal coalitional framework based on two
main ingredients: a binary relation over groups or coalitions and a ranking over the
individuals.

The main objective of the package socialranking is to provide answers for the general
problem of how to compare the elements of a 昀椀nite set � given a ranking over the
elements of its power-set (the set of all possible subsets of �). To do this, the package
socialranking implements a portfolio of solutions from the recent literature on social
rankings [4–10].

1.1 Quick Start

A power relation (i.e, a ranking over subsets of a 昀椀nite set � ; see the Section
2 for a formal de昀椀nition) can be constructed using the newPowerRelation() or
newPowerRelationFromString() functions.

library(socialranking)
newPowerRelation(c(1,2), ">", 1, "~", c(), ">", 2)
## Elements: 1 2
## 12 > (1 ~ {}) > 2

newPowerRelationFromString("ab > a ~ {} > b")
## Elements: a b
## ab > (a ~ {}) > b

newPowerRelationFromString("12 > 1 ~ {} > 2", asWhat = as.numeric)
## Elements: 1 2
## 12 > (1 ~ {}) > 2

Functions used to analyze a given PowerRelation object can be grouped into three main
categories:

• Comparison functions, only comparing two elements;
• Score functions, calculating the scores for each element;
• Ranking functions, creating SocialRankingSolution objects.
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Comparison functions Score functions Ranking functions
dominates()

cumulativelyDominates() cumulativeScores()

cpMajorityComparison()
cpMajorityComparisonScore()

copelandScores()
kramerSimpsonScores()

copelandRanking()
kramerSimpsonRanking()

lexcelScores() lexcelRanking()
dualLexcelRanking()

ordinalBanzhafScores() ordinalBanzhafRanking()

Comparison and score functions are often used to evaluate a social ranking solution (see
section 2 for a formal de昀椀nition). Listed below are some of the most prominent functions
and solutions introduced in the aforementioned papers.
These functions may be called as follows.

pr <- newPowerRelationFromString("ab > ac ~ bc > a ~ c > {} > b")

# a dominates b -> TRUE
dominates(pr, "a", "b")
## [1] TRUE

# b does not dominate a -> FALSE
dominates(pr, "b", "a")
## [1] FALSE

# calculate cumulative scores
scores <- cumulativeScores(pr)
# show score of element a
scores$a
## [1] 1 2 3 3 3

# performing a bunch of rankings
lexcelRanking(pr)
## a > b > c

dualLexcelRanking(pr)
## a > c > b

copelandRanking(pr)
## a > b ~ c

kramerSimpsonRanking(pr)
## a > b ~ c

ordinalBanzhafRanking(pr)
## a ~ c > b

Finally an incidence matrix for all given coalitions can be constructed using
powerRelationMatrix(pr) or as.relation(pr) from the relations package [11].
The incidence matrix may be displayed using relations::relation_incidence().
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rel <- relations::as.relation(pr)
rel
## A binary relation of size 7 x 7.

relations::relation_incidence(rel)
## Incidences:
## ab  ac   bc    a     c      {}       b
## ab 1 1 1 1 1 1 1
##  ac 0 1 1 1 1 1 1
##   bc 0 1 1 1 1 1 1
##    a 0 0 0 1 1 1 1
##     c 0 0 0 1 1 1 1
##      {} 0 0 0 0 0 1 1
##       b 0 0 0 0 0 0 1

2 PowerRelation Objects

We 昀椀rst introduce some basic de昀椀nitions on binary relations. Let � be a set. A setý ⊆ � × � is said a binary relation on �. For two elements ý, þ ∈ �, ýýþ refers to
their relation, more formally it means that (ý, þ) ∈ ý. A binary relation (ý, þ) ∈ ý is
said to be:

• re昀氀exive, if for each ý ∈ �, ýýý
• transitive, if for each ý, þ, ÿ ∈ �, ýýþ and þýÿ ⇒ ýýÿ
• total, if for each ý, þ ∈ �, ý ≠ þ ⇒ ýýþ or þýý
• symmetric, if for each ý, þ ∈ �, ýýþ ⇔ þýý
• asymmetric, if for each ý, þ ∈ �, (ý, þ) ∈ ý ⇒ (þ, ý) ∉ ý
• antisymmetric, if for each ý, þ ∈ �, ýýþ ∩ þýý ⇒ ý = þ

A preorder is de昀椀ned as a re昀氀exive and transitive relation. If it is total, it is called a
total preorder. Additionally if it is antisymmetric, it is called a linear order.

Let � = {1, 2, … , �} be a 昀椀nite set of elements, sometimes also called players. For some� ∈ {1, … , 2�}, let � = {þ1, þ2, … , þ�} be a set of coalitions such that þÿ ⊆ � for allÿ ∈ {1, … , �}. Thus � ⊆ 2� , where 2� denotes the power set of � (i.e., the set of all
subsets or coalitions of �).�(�) denotes the set of all total preorders on � , �(�) the set of all total preorders on�. A single total preorder ⪰∈ �(�) is said a power relation.

In a given power relation ⪰∈ �(�) on � ⊆ 2� , its symmetric part is denoted by ∼ (i.e.,þ ∼ ÿ if þ ⪰ ÿ and ÿ ⪰ þ), whereas its asymmetric part is denoted by ≻ (i.e., þ ≻ ÿ
if þ ⪰ ÿ and not ÿ ⪰ þ). In other terms, for þ ∼ ÿ we say that þ is indi昀昀erent to ÿ ,
whereas for þ ≻ ÿ we say that þ is strictly better than ÿ .

Lastly for a given power relation in the form of þ1 ⪰ þ2 ⪰ … ⪰ þ�, coalitions that are
indi昀昀erent to one another can be grouped into equivalence classes ∑ÿ such that we get
the quotient order ∑1 ≻ ∑2 ≻ … ≻ ∑�.

Example 1. Let � = {1, 2} be two players with its corresponding power
set 2� = {{1, 2}, {1}, {2}, ∅}. The following power relation is given: ⪰=
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{({1, 2}, {2}), ({2}, ∅), (∅, {2}), (∅, {1})}. This power relation can be rewritten in
a consecutive order as: {1, 2} ≻ {2} ∼ ∅ ≻ {1}. Its quotient order is formed by three
equivalence classes ∑1 = {{1, 2}}, ∑2 = {{2}, ∅}, and ∑3 = {{1}}; so the quotient
order of ⪰ is such that {{1, 2}} ≻ {{2}, ∅} ≻ {{1}}.

A social ranking solution (also called social ranking or, simply, solution) on � , is a
function ý ∶ �(�) ⟶ �(�) associating to each power relation ⪰∈ �(�) a total preorderý(⪰) (or ý⪰) over the elements of � . By this de昀椀nition, the notion ÿý⪰Ā means that
applying the social ranking solution to the power relation ⪰ gives the result that ÿ is
ranked higher than or equal to Ā.

2.1 Creating PowerRelation Objects

A power relation in the socialranking package is de昀椀ned to be re昀氀exive, transitive and
total. In designing the package it was deemed logical to have the coalitions speci昀椀ed in
a consecutive order, as seen in Example 1. Each coalition in that order is split either by
a ">" (left side strictly better) or a "~" (two coalitions indi昀昀erent to one another). The
following code chunk shows the power relation from Example 1 and how a correlating
PowerRelation object can be constructed.

library(socialranking)
pr <- newPowerRelation(c(1,2), ">", 2, "~", c(), ">", 1)
pr
## Elements: 1 2
## 12 > (2 ~ {}) > 1

class(pr)
## [1] "PowerRelation" "SingleCharElements"

Notice how coalitions such as {1, 2} are written as 12 to improve readability. Similarly
the function newPowerRelationFromString saves some typing on the user’s end by
interpreting each character of a coalition as a separate player. Note that spaces in that
function are ignored.

newPowerRelationFromString("12 > 2~{} > 1", asWhat = as.numeric)
## Elements: 1 2
## 12 > (2 ~ {}) > 1

The compact notation is only done in PowerRelation objects where every player is one
digit or one character long. If this is not the case, curly braces and commas are added
where needed.

prLong <- newPowerRelation(
c("Alice", "Bob"), ">", "Bob", "~", c(), ">", "Alice"

)
prLong
## Elements: Alice Bob
## {Alice, Bob} > ({Bob} ~ {}) > {Alice}

class(prLong)
## [1] "PowerRelation"
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Attribute Description Value in pr

elements Sorted vector of elements c(1,2)

rankingCoalitions Coalitions in power relation list(set(1,2),set(2),set(),set(1))

equivalenceClasses
List containing lists, each
containing coalitions in the
same equivalence class

list(list(set(1,2)),
list(set(2), set()),
list(set(1)))

Some may have spotted a "SingleCharElements" class missing in class(prLong) that
has been there in class(pr). "SingleCharElements" in昀氀uences the way coalitions are
printed. If it is removed from class(pr), the output will include the same curly braces
and commas displayed in prLong.

class(pr) <- class(pr)[-which(class(pr) == "SingleCharElements")]
pr
## Elements: 1 2
## {1, 2} > ({2} ~ {}) > {1}

Internally a PowerRelation is a list with four attributes (see table below). Notice that
every coalition vector is turned into a set object from the sets package[12].

Since each coalition vector is turned into a set, coalitions such as c(1,2), c(2,1) and
c(1,1,2,2) are equivalent.

prAtts <- newPowerRelation(c(2,2,1,1,2), ">", c(1,1,1), "~", c())
prAtts
## Elements: 1 2
## 12 > (1 ~ {})

prAtts$elements
## [1] 1 2

prAtts$rankingCoalitions
## [[1]]
## {1, 2}
##
## [[2]]
## {1}
##
## [[3]]
## {}

prAtts$rankingComparators
## [1] ">" "~"

prAtts$equivalenceClasses
## [[1]]
## [[1]][[1]]
## {1, 2}
##
##
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## [[2]]
## [[2]][[1]]
## {1}
##
## [[2]][[2]]
## {}

equivalenceClassIndex() determines at which index ÿ a coalition þ ∈ ∑ÿ.
equivalenceClassIndex(prAtts, c(2,1))
## [1] 1

equivalenceClassIndex(prAtts, 1)
## [1] 2

equivalenceClassIndex(prAtts, c())
## [1] 2

# are the given coalitions in the same equivalence class?
coalitionsAreIndifferent(prAtts, 1, c())
## [1] TRUE

coalitionsAreIndifferent(prAtts, 1, c(1,2))
## [1] FALSE

2.2 Manipulating PowerRelation Objects

It is strongly discouraged to directly manipulate PowerRelation objects, since
modifying one list or vector entry would require updates on all attributes. Instead
newPowerRelation o昀昀ers two parameters rankingCoalitions and rankingComparators,
each corresponding to the same named attributes of a PowerRelation object.

pr
## Elements: 1 2
## {1, 2} > ({2} ~ {}) > {1}

# reverse power ranking
newPowerRelation(
rankingCoalitions = rev(pr$rankingCoalitions),
rankingComparators = pr$rankingComparators

)
## Elements: 1 2
## 1 > ({} ~ 2) > 12

Note that rankingComparators is optional. By default it assumes rankingCoalitions
to be a linear order.

newPowerRelation(rankingCoalitions = rev(pr$rankingCoalitions))
## Elements: 1 2
## 1 > {} > 2 > 12
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If the length of the rankingComparators vector is smaller or larger than the length of
rankingCoalitions, the function silently 昀椀lls in any gaps.

# if too short -> comparator values are repeated
newPowerRelation(
rankingCoalitions = as.list(1:9),
rankingComparators = "~"

)
## Elements: 1 2 3 4 5 6 7 8 9
## (1 ~ 2 ~ 3 ~ 4 ~ 5 ~ 6 ~ 7 ~ 8 ~ 9)

newPowerRelation(
rankingCoalitions = as.list(letters[1:9]),
rankingComparators = c(">", "~", "~")

)
## Elements: a b c d e f g h i
## a > (b ~ c ~ d) > (e ~ f ~ g) > (h ~ i)

# if too long -> ignore excessive comparators
newPowerRelation(
rankingCoalitions = pr$rankingCoalitions,
rankingComparators = c("~", ">", "~", ">", ">", "~")

)
## Elements: 1 2
## (12 ~ 2) > ({} ~ 1)

2.3 Creating Power sets

As the number of elements � increases, the number of possible coalitions increases to|2� | = 2�. createPowerset is a convenient function that not only creates a power set2� which can be used to call newPowerRelation, but also formats the function call in
such a way that makes it easy to rearrange the ordering of the coalitions. RStudio o昀昀ers
shortcuts Alt+Up or Alt+Down (Option+Up or Option+Down on MacOS) to move one
or multiple lines of code up or down (see 昀椀g. 1).

createPowerset(
c("a", "b", "c"),
writeLines = TRUE,
copyToClipboard = FALSE

)
## newPowerRelation(
## c("a", "b", "c"),
## ">", c("a", "b"),
## ">", c("a", "c"),
## ">", c("b", "c"),
## ">", c("a"),
## ">", c("b"),
## ">", c("c"),
## ">", c(),
## )
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Figure 1: Using Alt+Up or Alt+Down to move one or more lines of code

If writeLines and copyToClipboard are both set to FALSE, the function instead
returns a list only containing coalition vectors. This list can be passed directly as
rankingCoalitions parameter to newPowerRelation.

ps <- createPowerset(1:2, includeEmptySet = FALSE)
ps
## [[1]]
## [1] 1 2
##
## [[2]]
## [1] 1
##
## [[3]]
## [1] 2

newPowerRelation(rankingCoalitions = ps)
## Elements: 1 2
## 12 > 1 > 2

newPowerRelation(rankingCoalitions = createPowerset(letters[1:4]))
## Elements: a b c d
## abcd > abc > abd > acd > bcd > ab > ac > ad > bc > bd > cd > a > b
> c > d > {}

3 SocialRankingSolution Objects

The main goal of the socialranking package is to rank elements based on a given power
ranking. More formally we try to map ý ∶ �(�) → �(�), associating to each power
relation ⪰∈ �(�) a total preorder ý(⪰) (or ý⪰) over the elements of � .

In this context ÿý⪰Ā tells us that, given a power relation ⪰ and applying a social ranking
solution ý(⪰), ÿ is ranked higher than or equal to Ā. From here on out, > and ~ also
denote the asymmetric and the symmetric part of a social ranking, respectively, ÿ > Ā
indicating that ÿ is strictly better than Ā, whereas in ÿ ~ Ā, ÿ is indi昀昀erent to Ā.

In section 3.1 we show how a general SocialRankingSolution object can be constructed
using the doRanking function. In the following sections, we will introduce the notion
of dominance[4], cumulative dominance[13] and CP-Majority comparison[6] that lets us
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compare two elements before diving into the social ranking solutions of the Ordinal
Banzhaf Index[5], Copeland-like and Kramer-Simpson-like methods[10], and lastly the
Lexicographical Excellence Solution[9] (Lexcel) and the Dual Lexicographical Excellence
solution[14] (Dual Lexcel).

Example 2. Let {ÿ, Ā} ≻ ({ÿ, ā} ∼ {Ā, ā}) ≻ ({ÿ} ∼ {ā}) > ∅ ≻ {Ā} be a power ranking.
Using the following social ranking solutions, we get:

• a > b > c for lexcelRanking
• a > c > b for dualLexcelRanking
• a > b ~ c for copelandRanking and kramerSimpsonRanking
• a ~ c > b for ordinalBanzhafRanking

3.1 Creating SocialRankingSolution objects

A SocialRankingSolution object represents a total preorder in �(�) over the elements
of � . Internally they are saved as a list of vectors, each containing players that are indif-
ferent to one another. This is somewhat similar to the equivalenceClasses attribute
in PowerRelation objects.

The function doRanking o昀昀ers a generic way of creating SocialRankingSolution
objects. Given a PowerRelation object and a sortable vector or list of scores it
determines the power relation between all players. Note that length(scores) ==
length(powerRelation$elements) must be TRUE. Additionally each index in scores
corresponds to the index in the sorted vector powerRelation$elements.

pr <- newPowerRelationFromString("abc > ab ~ ac > bc")

# pr$elements == c("a", "b", "c")
# we define some arbitrary score vector where "a" scores highest
# "b" and "c" both score 1, thus they are indifferent
scores <- c(100, 1, 1)
doRanking(pr, scores)
## a > b ~ c

# we can also tell doRanking to punish higher scores
doRanking(pr, scores, decreasing = FALSE)
## b ~ c > a

By default elements are assumed to be indi昀昀erent to one another if their scores are
equal. Sometimes however other factors come into play that make it non-obvious how
to compare two scores. In those cases a function comparing two scores can be passed
that should return TRUE if the two scores are considered equal.

scores <- c(0, 20, 21)
# b and c are considered to be indifferent,
# because their score difference is less than 2
doRanking(pr, scores, isIndifferent = function(a,b) abs(a-b) < 2)
## b ~ c > a
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3.2 Comparison Functions

Comparison functions only compare two elements in a given power relation. They do
not o昀昀er a social ranking solution. However in cases such as CP-Majority comparison,
those comparison functions may be used to construct a social ranking solution in some
particular cases.

3.2.1 Dominance

De昀椀nition 1. (Dominance [4]) Given a power relation ⪰∈ �(�) and two elementsÿ, Ā ∈ � , ÿ dominates Ā in ⪰ if þ ∪ {ÿ} ⪰ þ ∪ {Ā} for each þ ∈ 2�Ø{ÿ,Ā}. ÿ also strictly
dominates Ā if there exists þ ∈ 2�Ø{ÿ,Ā} such that þ ∪ {ÿ} ≻ þ ∪ {Ā}.

The implication is that for every coalition ÿ and Ā can join, ÿ has at least the same
positive impact as Ā.

The function dominates(pr, e1, e2) only returns a logical value TRUE if e1 dominates
e2, else FALSE. Note that e1 not dominating e2 does not indicate that e2 dominates e1,
nor does it imply that e1 is indi昀昀erent to e2.

pr <- newPowerRelationFromString(
"3 > 1 > 2 > 12 > 13 > 23",
asWhat = as.numeric

)

# 1 clearly dominates 2
dominates(pr, 1, 2)
## [1] TRUE

dominates(pr, 2, 1)
## [1] FALSE

# 3 does not dominate 1, nor does 1 dominate 3, because
# {}u3 > {}u1, but 2u1 > 2u3
dominates(pr, 1, 3)
## [1] FALSE

dominates(pr, 3, 1)
## [1] FALSE

# an element i dominates itself, but it does not strictly dominate itself
# because there is no Sui > Sui
dominates(pr, 1, 1)
## [1] TRUE

dominates(pr, 1, 1, strictly = TRUE)
## [1] FALSE

For any þ ∈ 2�Ø{ÿ,Ā}, we can only compare þ ∪ {ÿ} ⪰ þ ∪ {Ā} if both þ ∪ {ÿ} and þ ∪ {Ā}
take part in the power relation.
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Additionally, for þ = ∅, we also want to compare {ÿ} ⪰ {Ā}. In some situations how-
ever a comparison between singletons is not desired. For this reason the parameter
includeEmptySet can be set to FALSE such that ∅ ∪ {ÿ} ⪰ ∅ ∪ {Ā} is not considered in
the CP-Majority comparison.

pr <- newPowerRelationFromString("ac > bc ~ b > a ~ abc > ab")

# FALSE because ac > bc, whereas b > a
dominates(pr, "a", "b")
## [1] FALSE

# TRUE because ac > bc, ignoring b > a comparison
dominates(pr, "a", "b", includeEmptySet = FALSE)
## [1] TRUE

3.2.2 Cumulative Dominance

When comparing two players ÿ, Ā ∈ � , instead of looking at particular coalitions þ ∈2�Ø{ÿ,Ā} they can join, we look at how many stronger coalitions they can form at each
point. This property was originally introduced in [13] as a regular dominance axiom.

For a given power relation ⪰∈ �(�) and its corresponding quotient order ∑1 ≻ ⋯ ≻∑�, the power of a player ÿ is given by a vector ScoreCumul(ÿ) ∈ ℕ� where we cumula-
tively sum the amount of times ÿ appears in ∑ā for each index ā.

De昀椀nition 2. (Cumulative Dominance Score) Given a power relation ⪰∈ �(�) and its
quotient order ∑1 ≻ ⋯ ≻ ∑�, the cumulative score vector ScoreCumul(ÿ) ∈ ℕ� of an
element ÿ ∈ � is given by:

ScoreCumul(ÿ) = ( ā∑�=1 |{þ ∈ ∑� ∶ ÿ ∈ þ}|)ā∈{1,…,�} (1)

De昀椀nition 3. (Cumulative Dominance) Given two elements ÿ, Ā ∈ � , ÿ cumulatively
dominates Ā in ⪰, if ScoreCumul(ÿ)ā ≥ ScoreCumul(Ā)ā for each ā ∈ {1, … , �}. ÿ
also strictly cumulatively dominates Ā if there exists a ā such that ScoreCumul(ÿ)ā >
ScoreCumul(Ā)ā.

For a given PowerRelation object pr and two elements e1 and e2, cumulativeScores(pr)
returns the vectors described in de昀椀nition 2 for each element, cumulativelyDominates(pr,
e1, e2) returns TRUE or FALSE based on de昀椀nition 3.

pr <- newPowerRelationFromString("ab > (ac ~ bc) > (a ~ c) > {} > b")
cumulativeScores(pr)
## $a
## [1] 1 2 3 3 3
##
## $b
## [1] 1 2 2 2 3
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##
## $c
## [1] 0 2 3 3 3
##
## attr(,"class")
## [1] "CumulativeScores"

# for each index k, $a[k] >= $b[k]
cumulativelyDominates(pr, "a", "b")
## [1] TRUE

# $a[3] > $b[3], therefore a also strictly dominates b
cumulativelyDominates(pr, "a", "b", strictly = TRUE)
## [1] TRUE

# $b[1] > $c[1], but $c[3] > $b[3]
# therefore neither b nor c dominate each other
cumulativelyDominates(pr, "b", "c")
## [1] FALSE

cumulativelyDominates(pr, "c", "b")
## [1] FALSE

Similar to the dominance property from our previous section, two elements not domi-
nating one or the other does not indicate that they are indi昀昀erent.

3.2.3 CP-Majority comparison

The Ceteris Paribus Majority (CP-Majority) relation is a somewhat relaxed version of
the dominance property. Instead of checking if þ ∪ {ÿ} ⪰ þ ∪ {Ā} for all þ ∈ 2�Ø{ÿ,Ā}, the
CP-Majority relation ÿý⪰

CPĀ holds if the number of times þ ∪ {ÿ} ⪰ þ ∪ {Ā} is greater
than or equal to the number of times þ ∪ {Ā} ⪰ þ ∪ {ÿ}.

De昀椀nition 4. (CP-Majority [6]) Let ⪰∈ �(�). The Ceteris Paribus majority relation
is the binary relation ý⪰

CP ⊆ � × � such that for all ÿ, Ā ∈ � :ÿý⪰
CPĀ ⇔ ĂÿĀ(⪰) ≥ ĂĀÿ(⪰) (2)

where ĂÿĀ(⪰) represents the cardinality of the set �ÿĀ(⪰), the set of all coalitions þ ∈2�Ø{ÿ,Ā} for which þ ∪ {ÿ} ⪰ þ ∪ {Ā}.

cpMajorityComparisonScore(pr, e1, e2) calculates the two scores ĂÿĀ(⪰) and−ĂĀÿ(⪰). Notice the minus sign - that way we can use the sum of both values to
determine the relation between e1 and e2.

pr <- newPowerRelationFromString("ab > (ac ~ bc) > (a ~ c) > {} > b")
cpMajorityComparisonScore(pr, "a", "b")
## [1] 2 -1
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cpMajorityComparisonScore(pr, "b", "a")
## [1] 1 -2

if(sum(cpMajorityComparisonScore(pr, "a", "b")) >= 0) {
print("a >= b")

} else {
print("b > a")

}
## [1] "a >= b"

As a slight variation the logical parameter strictly calculates ĂÿĀ(≻) and −ĂĀÿ(≻), the
number of coalitions þ ∈ 2�Ø{ÿ,Ā} where þ ∪ {ÿ} ≻ þ ∪ {Ā}.

# Now (ac ~ bc) is not counted
cpMajorityComparisonScore(pr, "a", "b", strictly = TRUE)
## [1] 1 0

# Notice that the sum is still the same
sum(cpMajorityComparisonScore(pr, "a", "b", strictly = FALSE)) ==
sum(cpMajorityComparisonScore(pr, "a", "b", strictly = TRUE))

## [1] TRUE

Coincidentally, cpMajorityComparisonScore with strictly = TRUE can be used to
determine if e1 (strictly) dominates e2.

cpMajorityComparisonScore should be used for simple and quick calculations. The
more comprehensive function cpMajorityComparison(pr, e1, e2) does the same cal-
culations, but in the process retains more information about all the comparisons that
might be interesting to a user, i.e., the set �ÿĀ(⪰) and �Āÿ(⪰) as well as the relationÿý⪰

CPĀ. See the documentation for a full list of available data.

# extract more information in cpMajorityComparison
cpMajorityComparison(pr, "a", "b")
## a > b
## D_ab = {c, {}}
## D_ba = {c}
## Score of a = 2
## Score of b = 1

# with strictly set to TRUE, coalition c does
# neither appear in D_ab nor in D_ba
cpMajorityComparison(pr, "a", "b", strictly = TRUE)
## a > b
## D_ab = {{}}
## D_ba = {}
## Score of a = 1
## Score of b = 0

The CP-Majority relation can generate cycles, which is the reason that it is not of-
fered as a social ranking solution. Instead we will introduce the Copeland-like method
and Kramer-Simpson-like method in chapters 3.3.2 and 3.3.3 that make use of the CP-
Majority functions to determine a power relation between elements. For further readings
on CP-Majority, see [7] and [10].
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3.3 Social Ranking Solutions

3.3.1 Ordinal Banzhaf

The Ordinal Banzhaf Score is a vector de昀椀ned by the principle of marginal contributions.
Intuitively speaking, if a player joining a coalition causes it to move up in the ranking,
it can be interpreted as a positive contribution. On the contrary a negative contribution
means that participating causes the coalition to go down in the ranking.

De昀椀nition 5. (Ordinal marginal contribution [5]) Let ⪰∈ �(�). For a given elementÿ ∈ � , its ordinal marginal contribution ��ÿ (⪰) with right to a coalition þ ∈ � is de昀椀ned
as:

��ÿ (⪰) = ⎧{⎨{⎩ 1 if þ ∪ {ÿ} ≻ þ−1 if þ ≻ þ ∪ {ÿ}0 otherwise
(3)

De昀椀nition 6. (Ordinal Banzhaf relation) Let ⪰∈ �(�). The Ordinal Banzhaf relation
is the binary relation ý⪰

Banz ⊆ � × � such that for all ÿ, Ā ∈ � :ÿý⪰
BanzĀ ⇔ ScoreBanz(ÿ) ≥ ScoreBanz(Ā), (4)

where ScoreBanz(ÿ) = ∑� ��ÿ (⪰) for all þ ∈ � Ø {ÿ}.

Note that if þ ∪ {ÿ} ∉ �, ��ÿ (⪰) = 0.

The function ordinalBanzhafScores returns two numbers for each element: the number
of coalitions þ where a player’s contribution has a positive impact, and the number of
coalitions þ where a player’s contribution has a negative impact. These two numbers
are added and elements are ranked highest to lowest.

pr <- newPowerRelation(
c(1,2),
">", c(1),
">", c(2)

)

# both players 1 and 2 have an Ordinal Banzhaf Score of 1
# therefore they are indifferent to one another
ordinalBanzhafScores(pr)
## $`1`
## [1] 1 0
##
## $`2`
## [1] 1 0
##
## attr(,"class")
## [1] "OrdinalBanzhafScores"

ordinalBanzhafRanking(pr)
## 1 ~ 2
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pr <- newPowerRelationFromString("ab > a > {} > b")

# player b has a negative impact on the empty set
# -> player b's score is 1 - 1 = 0
# -> player a's score is 2 - 0 = 2
sapply(ordinalBanzhafScores(pr), function(score) sum(score))
## a b
## 2 0

ordinalBanzhafRanking(pr)
## a > b

3.3.2 Copeland-like method

The Copeland-like method of ranking elements based on the CP-Majority rule is strongly
inspired by the Copeland score from social choice theory[15]. The score of an elementÿ ∈ � is determined by the amount of the pairwise CP-Majority winning comparisonsÿý⪰

CPĀ, minus the number of all losing comparisons Āý⪰
CPÿ against all other elementsĀ ∈ � Ø {ÿ}.

De昀椀nition 7. (Copeland-like relation [10]) Let ⪰∈ �(�). The Copeland-like relation
is the binary relation ý⪰

Cop ⊆ � × � such that for all ÿ, Ā ∈ � :ÿý⪰
CopĀ ⇔ ScoreCop(ÿ) ≥ ScoreCop(Ā), (5)

where ScoreCop(ÿ) = |{Ā ∈ � Ø {ÿ} ∶ ĂÿĀ(⪰) ≥ ĂĀÿ(⪰)}| − |{Ā ∈ � Ø {ÿ} ∶ ĂÿĀ(⪰) ≤ ĂĀÿ(⪰)}|
copelandScores(pr) returns two numerical values for each element, a positive number
for the winning comparisons (shown in ScoreCop(ÿ) on the left) and a negative number
for the losing comparisons (in ScoreCop(ÿ) on the right).

pr <- newPowerRelationFromString("(abc ~ ab ~ c ~ a) > (b ~ bc) > ac")
scores <- copelandScores(pr)

# Based on CP-Majority, a>=b and a>=c (+2), but b>=a (-1)
scores$a
## [1] 2 -1

sapply(copelandScores(pr), sum)
## a b c
## 1 0 -1

copelandRanking(pr)
## a > b > c

3.3.3 Kramer-Simpson-like method

Strongly inspired by the Kramer-Simpson method of social choice theory[16, 17], ele-
ments are ranked inversely to their greatest pairwise defeat over all possible CP-Majority
comparisons.
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De昀椀nition 8. (Kramer-Simpson-like relation [10]) Let ⪰∈ �(�). The Kramer-Simpson-
like relation is the binary relation ý⪰

KS ⊆ � × � such that for all ÿ, Ā ∈ � :ÿý⪰
KSĀ ⇔ ScoreKS(ÿ) ≤ ScoreKS(Ā), (6)

where ScoreKS(ÿ) = maxĀ ĂĀÿ(⪰) for all Ā ∈ � Ø {ÿ}.

kramerSimpsonScores(pr) returns a single numerical value for each element, which
sorted lowest to highest gives us the ranking solution.

pr <- newPowerRelationFromString("(abc ~ ab ~ c ~ a) > (b ~ bc) > ac")
unlist(kramerSimpsonScores(pr))
## a b c
## 0 0 1

kramerSimpsonRanking(pr)
## a ~ b > c

There is a small caveat to De昀椀nition 8. By default this function does not compare Ăÿÿ(⪰).
In other terms, the score of every element is the maximum CP-Majority comparison score
against all other elements.

This is slightly di昀昀erent from the de昀椀nition found in [10], where the CP-Majority com-
parison Ăÿÿ(⪰) is also considered. Since by de昀椀nition Ăÿÿ(⪰) = 0, the Kramer-Simpson
scores in those cases will never be negative, possibly discarding valuable information.

To still account for the original de昀椀nition in [10], the functions kramerSimpsonScores
and kramerSimpsonRanking o昀昀er a compIvsI parameter that can be set to TRUE if one
wishes for Ăÿÿ(⪰) to be included in the comparisons.

pr <- newPowerRelationFromString(
"b > (a ~ c) > ab > (ac ~ bc) > {} > abc"

)
kramerSimpsonRanking(pr)
## b > a > c

# notice how b's score is negative
unlist(kramerSimpsonScores(pr))
## a b c
## 1 -1 2

kramerSimpsonScores(pr, elements = "b", compIvsI = TRUE)
## $b
## [1] 0
##
## attr(,"class")
## [1] "KramerSimpsonScores"
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3.3.4 Lexicographical Excellence Solution

The idea behind the lexicographical excellence solution (Lexcel) is to reward elements
appearing more frequently in higher ranked equivalence classes.

For a given power relation ⪰ and its quotient order ∑1 ≻ ⋯ ≻ ∑�, we denote by ÿā
the number of coalitions in ∑ā containing ÿ:ÿā = |{þ ∈ ∑ā ∶ ÿ ∈ þ}| (7)

for ā ∈ {1, … , �}. Now, let ScoreLex(ÿ) be the �-dimensional vector ScoreLex(ÿ) =(ÿ1, … , ÿ�) associated to ⪰. Consider the lexicographic order ≥Lex among vectors i and
j: i ≥Lex j if either i = j or there exists � ∶ ÿ� = Ā�, � ∈ {1, … , � − 1}, and ÿ� > Ā�.
De昀椀nition 9. (Lexicographic-Excellence relation [8]) Let ⪰∈ �(�) with its correspond-
ing quotient order ∑1 ≻ ⋯ ≻ ∑�. The Lexicographic-Excellence relation is the binary
relation ý⪰

Lex ⊆ � × � such that for all ÿ, Ā ∈ � :ÿý⪰
LexĀ ⇔ ScoreLex(ÿ) ≥Lex ScoreLex(Ā) (8)

pr <- newPowerRelationFromString(
"12 > (123 ~ 23 ~ 3) > (1 ~ 2) > 13",
asWhat = as.numeric

)

# show the number of times an element appears in each equivalence class
# e.g. 3 appears 3 times in [[2]] and 1 time in [[4]]
lapply(pr$equivalenceClasses, unlist)
## [[1]]
## [1] 1 2
##
## [[2]]
## [1] 1 2 3 2 3 3
##
## [[3]]
## [1] 1 2
##
## [[4]]
## [1] 1 3

lexScores <- lexcelScores(pr)
for(i in names(lexScores))
paste0("Lexcel score of element ", i, ": ", lexScores[i])

# at index 1, element 2 ranks higher than 3
lexScores['2'] > lexScores['3']
## [1] TRUE
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# at index 2, element 2 ranks higher than 1
lexScores['2'] > lexScores['1']
## [1] TRUE

lexcelRanking(pr)
## 2 > 1 > 3

For some generalizations of the Lexcel solution see also [9].

Lexcel score vectors are very similar to the cumulative score vectors (3.2.2) in that the
number of times an element appears in a given equivalence class is of interest. In fact,
applying the base function cumsum on an element’s lexcel score gives us its cumulative
score.

lexcelCumulated <- lapply(lexScores, cumsum)
cumulScores <- cumulativeScores(pr)

paste0(names(lexcelCumulated), ": ", lexcelCumulated, collapse = ', ')
## [1] "1: 1:4, 2: c(1, 3, 4, 4), 3: c(0, 3, 3, 4)"

paste0(names(cumulScores), ": ", cumulScores, collapse = ', ')
## [1] "1: 1:4, 2: c(1, 3, 4, 4), 3: c(0, 3, 3, 4)"

3.3.5 Dual Lexicographical Excellence Solution

Similar to the Lexcel ranking, the Dual Lexcel also uses the Lexcel score vectors from
de昀椀nition 9 to establish a ranking. However, instead of rewarding higher frequencies in
high ranking coalitions, it punishes higher frequencies in lower ranking coalitions, or, it
punishes mediocrity[14].

Take the values ÿā for ā ∈ {1, … , �} and the Lexcel score vector ScoreLex(ÿ) from
section 3.3.4. Consider the dual lexicographical order ≥DualLex among vectors i and j:
i ≥DualLex j if either i = j or there exists � ∶ ÿ� < Ā� and ÿ� = Ā�, � ∈ {� + 1, … , �}.

De昀椀nition 10. (Dual Lexicographical-Excellence relation [14]) Let ⪰∈ �(�). The Dual
Lexicographic-Excellence relation is the binary relation ý⪰

DualLex ⊆ � × � such that for
all ÿ, Ā ∈ � : ÿý⪰

DualLexĀ ⇔ ScoreLex(ÿ) ≥DualLex ScoreLex(Ā) (9)

The S3 class LexcelScores does not account for Dual Lexcel comparisons. Instead
-rev(x) is called on a Lexcel score vector x such that the resulting comparisons produces
a Dual Lexcel ranking solution.

pr <- newPowerRelationFromString(
"12 > (123 ~ 23 ~ 3) > (1 ~ 2) > 13",
asWhat = as.numeric

)

lexScores <- lexcelScores(pr)
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# in regular Lexcel, 1 scores higher than 3
lexScores['1'] > lexScores['3']
## [1] TRUE

# turn Lexcel score into Dual Lexcel score
dualLexScores <- structure(
lapply(lexcelScores(pr), function(r) -rev(r)),
class = 'LexcelScores'

)

# now 1 scores lower than 3
dualLexScores['1'] > dualLexScores['3']
## [1] FALSE

# element 2 comes out at the top in both Lexcel and Dual Lexcel
lexcelRanking(pr)
## 2 > 1 > 3

dualLexcelRanking(pr)
## 2 > 3 > 1

4 Relations

4.1 Incidence Matrix

In our vignette we focused more on the intuitive aspects of power relations and social
ranking solutions. To reiterate, a power relation is a total preorder, or a re昀氀exive and
transitive relation ⪰∈ �×�, where ∼ denotes the symmetric part and ≻ its asymmetric
part.

A power relation can be viewed as an incidence matrix (ĀÿĀ) = � ∈ {0, 1}|�|×|�|. Given
two coalitions ÿ, Ā ∈ �, if ÿýĀ then ĀÿĀ = 1, else 0.

With help of the relations package, the functions relations::as.relation(pr)
and powerRelationMatrix(pr) turn a PowerRelation object into a relation
object. relations then o昀昀ers ways to display the relation object as an
incidence matrix with relation_incidence(rel) and to test basic proper-
ties such relation_is_linear_order(rel), relation_is_acyclic(rel) and
relation_is_antisymmetric(rel) (see relations package for more [11]).

pr <- newPowerRelationFromString("ab > a > {} > b")
rel <- relations::as.relation(pr)

relations::relation_incidence(rel)
## Incidences:
## ab  a   {}    b
## ab 1 1 1 1
##  a 0 1 1 1
##   {} 0 0 1 1
##    b 0 0 0 1
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c(
relations::relation_is_acyclic(rel),
relations::relation_is_antisymmetric(rel),
relations::relation_is_linear_order(rel),
relations::relation_is_complete(rel),
relations::relation_is_reflexive(rel),
relations::relation_is_transitive(rel)

)
## [1] TRUE TRUE TRUE TRUE TRUE TRUE

Note that the columns and rows are sorted by their names in relation_domain(rel),
hence why each name is preceded by the ordering number.

# a power relation where coalitions {1} and {2} are indifferent
pr <- newPowerRelationFromString("12 > (1 ~ 2)", asWhat = as.numeric)
rel <- relations::as.relation(pr)

# we have both binary relations {1}R{2} as well as {2}R{1}
relations::relation_incidence(rel)
## Incidences:
## 12  1   2
## 12 1 1 1
##  1 0 1 1
##   2 0 1 1

# FALSE
c(
relations::relation_is_acyclic(rel),
relations::relation_is_antisymmetric(rel),
relations::relation_is_linear_order(rel),
relations::relation_is_complete(rel),
relations::relation_is_reflexive(rel),
relations::relation_is_transitive(rel)

)
## [1] FALSE FALSE FALSE TRUE TRUE TRUE

4.2 Cycles and Transitive Closure

A cycle in a power relation exists, if there is one coalition þ ∈ 2� that appears twice.
For example, in {1, 2} ≻ ({1} ∼ ∅) ≻ {1, 2}, the coalition {1, 2} appears at the beginning
and at the end of the power relation.

Properly handling power relations and calculating social ranking solutions with cycles
is somewhat ill-de昀椀ned, hence a warning message is shown as soon as one is created.

newPowerRelation(c(1,2), ">", 2, ">", 1, "~", 2, ">", c(1,2))
#! Warning in newPowerRelation(c(1, 2), ">", 2, ">", 1, "~", 2, ">",
c(1, 2)): Found the following duplicates. Did you mean to introduce
cycles?
#! {2}
#! {1, 2}
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## Elements: 1 2
## 12 > 2 > (1 ~ 2) > 12

Recall that a power relation is transitive, meaning for three coalitions ý, þ, ÿ ∈ 2� , ifýýþ and þýÿ, then ýýÿ. If we introduce cycles, we pretty much introduce symmetry.
Assume we have the power relation ý ≻ þ ≻ ý. Then, even though ýýþ and þýý
are de昀椀ned as the asymmetric part of the power relation ⪰, together they form the
symmetric power relation ý ∼ þ.

transitiveClosure(pr) is a function that turns a power relation with cycles into one
without one. In the process of removing duplicate coalitions, it turns all asymmectric
relations within a cycle into symmetric relations.

pr <- suppressWarnings(newPowerRelation(1, '>', 2, '>', 1))
pr
## Elements: 1 2
## 1 > 2 > 1

transitiveClosure(pr)
## Elements: 1 2
## (1 ~ 2)

# two cycles, (1>3>1) and (2>23>2)
pr <- suppressWarnings(
newPowerRelationFromString(

"1 > 3 > 1 > 2 > 23 > 2",
asWhat = as.numeric

)
)

transitiveClosure(pr)
## Elements: 1 2 3
## (1 ~ 3) > (2 ~ 23)

# overlapping cycles
pr <- suppressWarnings(
newPowerRelationFromString("c > ac > b > ac > (a ~ b) > abc")

)

transitiveClosure(pr)
## Elements: a b c
## c > (ac ~ b ~ a) > abc
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