
Package ‘ontologics’
January 31, 2023

Title Code-Logics to Handle Ontologies

Version 0.6.5

Description Provides tools to build and work with an ontology of linked (open)
data in a tidy workflow. It is inspired by the Food and Agrilculture
Organizations (FAO) caliper platform
<https://www.fao.org/statistics/caliper/web/> and
makes use of the Simple Knowledge Organisation System (SKOS).

URL https://github.com/luckinet/ontologics

BugReports https://github.com/luckinet/ontologics/issues

Depends R (>= 3.5.0)

License GPL (>= 3)

Encoding UTF-8

RoxygenNote 7.2.3

Imports checkmate, dplyr, httr, magrittr, methods, purrr, readr,
rlang, stringr, tibble, tidyr, tidyselect, rdflib, fuzzyjoin,
beepr

Suggests knitr, rmarkdown

VignetteBuilder knitr

NeedsCompilation no

Author Steffen Ehrmann [aut, cre] (<https://orcid.org/0000-0002-2958-0796>),
Arne Rümmler [aut, ctb] (<https://orcid.org/0000-0001-8637-9071>),
Carsten Meyer [ctb] (<https://orcid.org/0000-0003-3927-5856>)

Maintainer Steffen Ehrmann <steffen.ehrmann@posteo.de>

Repository CRAN

Date/Publication 2023-01-31 13:10:08 UTC

R topics documented:
edit_matches . 2
export_as_rdf . 3

1

https://www.fao.org/statistics/caliper/web/
https://github.com/luckinet/ontologics
https://github.com/luckinet/ontologics/issues
https://orcid.org/0000-0002-2958-0796
https://orcid.org/0000-0001-8637-9071
https://orcid.org/0000-0003-3927-5856

2 edit_matches

get_class . 4
get_concept . 5
get_source . 6
load_ontology . 7
make_tree . 8
new_class . 8
new_concept . 9
new_mapping . 11
new_source . 13
onto-class . 14
show,onto-method . 15
start_ontology . 15

Index 17

edit_matches Edit matches manually in a csv-table

Description

Allows the user to match concepts with an already existing ontology, without actually writing into
the ontology, but instead storing the resulting matching table as csv. This function is used in the
function new_mapping and is not primarily intended for use on its own.

Usage

edit_matches(
concepts,
attributes = NULL,
source = NULL,
ontology = NULL,
matchDir = NULL,
verbose = TRUE,
beep = NULL

)

Arguments

concepts data.frame(.)
the new concepts that shall be manually matched.

attributes data.frame(.)
the attributes of new concepts that help to match new and target concepts man-
ually (must contain at least the column ’class’).

source character(1)
any character uniquely identifying the source dataset of the new concepts.

ontology ontology(1)
either a path where the ontology is stored, or an already loaded ontology.

export_as_rdf 3

matchDir character(1)
the directory where to store source-specific matching tables.

verbose logical(1)
whether or not to give detailed information on the process of this function.

beep integerish(1)
Number specifying what sound to be played to signal the user that a point of
interaction is reached by the program, see beep.

Details

In order to match new concepts into an already existing ontology, it may become necessary to carry
out manual matches of the new concepts with already harmonised concepts, for example, when the
new concepts are described with terms that are not yet in the ontology. This function puts together a
table, in which the user would edit matches by hand. Whith the argument verbose = TRUE, detailed
information about the edit process are shown to the user. After defining matches, and even if not
all necessary matches are finished, the function stores a specific "matching table" with the name
match_SOURCE.csv in the respective directory (matchDir), from where work can be picked up
and continued at another time.

Fuzzy matching is carried out and matches with 0, 1 or 2 differing charcters are presented in a
respective column.

Value

A table that contains all new matches, or if none of the new concepts weren’t already in the ontology,
a table of the already sucessful matches.

export_as_rdf Export an ontology as RDF

Description

Export an ontology as RDF

Usage

export_as_rdf(ontology, filename)

Arguments

ontology ontology(1)
an already loaded or created ontology object.

filename character(1)
the filename of the exported ontology. The format of the exported ontology
is guessed by the extension of the filename. The guessing is performed by the
rdflib package. Valid extensions are ".rdf" for "rdfxml", ".nt" for "ntriples", ".ttl"
for "turtle" or ".json" for "jsonld".

4 get_class

Value

No return value, called for the side effect of exporting an ontology.

Examples

ontoDir <- system.file("extdata", "crops.rds", package = "ontologics")
onto <- load_ontology(path = ontoDir)

Not run:

export_as_rdf(ontology = onto, filename = "onto.ttl")

End(Not run)

get_class Get class(es) in an ontology

Description

Get class(es) in an ontology

Usage

get_class(..., regex = FALSE, external = FALSE, ontology = NULL)

Arguments

... combination of column name and value to filter that column by. The value to
filter by can be provided as regular expression, if regex = TRUE.

regex logical(1)
whether or not the value in ... shall be matched in full, or whether any partial
match should be returned.

external logical(1)
whether or not the external classes (TRUE), or the harmonized classes should
be returned (FALSE, default).

ontology ontology(1)
either a path where the ontology is stored, or an already loaded ontology.

Value

A table of the class(es) in the ontology according to the values in ...

get_concept 5

Examples

ontoDir <- system.file("extdata", "crops.rds", package = "ontologics")
onto <- load_ontology(path = ontoDir)

exact classes from a loaded ontology ...
get_class(label = "class", ontology = onto)

... or one stored on the harddisc
get_class(id = ".xx.xx", ontology = ontoDir)

use regular expressions ...
get_class(label = "ro", regex = TRUE, ontology = onto)

get all sources
get_class(ontology = onto)

get_concept Get a concept in an ontology

Description

Get a concept in an ontology

Usage

get_concept(
table = NULL,
ontology = NULL,
per_class = FALSE,
mappings = FALSE,
regex = FALSE,
external = FALSE

)

Arguments

table character(1)
a table containing all columns (a subset of "id", "class", "label", "has_broader"
and "has_source") of the ontology that shall be filter by the values in those
columns.

ontology ontology(1)
either a path where the ontology is stored, or an already loaded ontology.

per_class logical(1)
whether ot not to flatten the ontology before matching table with the ontology,
whereby table would contain columns of the classes in the ontology. This can
be useful when concepts are unique only within their parent concepts, so that
unique identification is only possible when they are matched together.

6 get_source

mappings logical(1)
whether or not to provide a table that includes mappings. In this case, only
unique items of the concepts in table are included in the output table.

regex logical(1)
if regex = TRUE, the columns defined in table are filtered by str_detect on the
column values (if you define several, they are combined with an AND operator),
otherwise a left_join on the ontology is carried out.

external logical(1)
whether or not to return merely the table of external concepts.

Value

A table of a subset of the ontology according to the values in ...

Examples

ontoDir <- system.file("extdata", "crops.rds", package = "ontologics")
onto <- load_ontology(path = ontoDir)

exact matches from a loaded ontology ...
get_concept(table = data.frame(label = "FODDER CROPS"), ontology = onto)

... or one stored on the harddisc, with mappings (none available here)
get_concept(table = data.frame(label = "FODDER CROPS"), ontology = ontoDir,

mappings = TRUE)

extract concepts based on regular expressions
get_concept(table = data.frame(label = "crop", id = ".03$"),

regex = TRUE, ontology = ontoDir)

get_source Get source(e) in an ontology

Description

Get source(e) in an ontology

Usage

get_source(..., regex = FALSE, ontology = NULL)

Arguments

... combination of column name and value to filter that column by. The value to
filter by can be provided as regular expression, if regex = TRUE.

regex logical(1)
whether or not the value in ... shall be matched in full, or whether any partial
match should be returned.

load_ontology 7

ontology ontology(1)
either a path where the ontology is stored, or an already loaded ontology.

Value

A table of the source(s) in the ontology according to the values in ...

Examples

ontoDir <- system.file("extdata", "crops.rds", package = "ontologics")
onto <- load_ontology(path = ontoDir)

exact sources from a loaded ontology ...
get_source(label = "harmonised", ontology = onto)

... or one stored on the harddisc
get_source(version = "0.0.1", ontology = ontoDir)

get all sources
get_source(ontology = onto)

load_ontology Load an ontology

Description

Load an ontology

Usage

load_ontology(path = NULL)

Arguments

path character(1)
the path where the ontology to load is stored.

Value

A table of the full ontology (i.e., where attribute and mapping tables are joined).

Examples

load an already existing ontology
load_ontology(path = system.file("extdata", "crops.rds", package = "ontologics"))

8 new_class

make_tree Make a tree of an ontology

Description

Make a tree of an ontology

Usage

make_tree(top, ontology = NULL)

Arguments

top tibble(1)
the concepts table that shall be at the top of the tree.

ontology ontology(1)
either a path where the ontology is stored, or an already loaded ontology.

new_class Add a new valid class to an ontology

Description

Add a new valid class to an ontology

Usage

new_class(new, target, description = NULL, ontology = NULL)

Arguments

new character(1)
the new class label.

target character(1)
the class to which the new class shall be related.

description character(1)
a verbatim description of the new class.

ontology ontology(1)
either a path where the ontology is stored, or an already loaded ontology.

Value

the updated ontology that contains the new class(es) defined here.

new_concept 9

Examples

ontoDir <- system.file("extdata", "crops.rds", package = "ontologics")
onto <- load_ontology(path = ontoDir)

onto <- new_class(new = "use type", target = "class", description = "something",
ontology = onto)

new_concept Add a new concept to an ontology

Description

This adds a new concept to an existing ontology to semantically integrate and thus harmonise it
with the already existing ontology.

Usage

new_concept(
new,
broader = NULL,
description = NULL,
class = NULL,
ontology = NULL

)

Arguments

new character(.)
the english label(s) of new concepts that shall be included in the ontology.

broader data.frame(.)
the english label(s) of already harmonised concepts to which the new concept
shall be semantically linked via a skos:broader relation, see Details.

description character(.)
a verbatim description of the new concept(s).

class character(.)
the class(es) of the new labels.

ontology ontology(1)
either a path where the ontology is stored, or an already loaded ontology.

Value

returns invisibly a table of the new harmonised concepts that were added to the ontology, or a
message that nothing new was added.

https://www.w3.org/TR/skos-reference/#semantic-relations

10 new_concept

Examples

ontoDir <- system.file("extdata", "crops.rds", package = "ontologics")
onto <- load_ontology(path = ontoDir)

add fully known concepts
concepts <- data.frame(

old = c("Bioenergy woody", "Bioenergy herbaceous"),
new = c("acacia", "miscanthus")

)

onto <- new_source(
version = "0.0.1",
name = "externalDataset",
description = "a vocabulary",
homepage = "https://www.something.net",
license = "CC-BY-0",
ontology = onto

)

onto <- new_concept(
new = concepts$new,
broader = get_concept(

table = data.frame(label = concepts$old),
ontology = onto

),
class = "crop",
ontology = onto

)

add concepts where the nesting is clear, but not the new class
concepts <- data.frame(

old = c("Barley", "Barley"),
new = c("food", "bio-energy")

)

onto <- new_concept(
new = concepts$new,
broader = get_concept(

table = data.frame(label = concepts$old),
ontology = onto

),
ontology = onto

)

define that class ...
onto <- new_class(

new = "use type", target = "class",
description = "the way a crop is used", ontology = onto

)

... and set the concepts again
onto <- new_concept(

new_mapping 11

new = concepts$new,
broader = get_concept(

table = data.frame(label = concepts$old),
ontology = onto

),
class = "use type",
ontology = onto

)

new_mapping Add a new mapping to an ontology

Description

Extend an ontology by creating mappings between classes and concepts of external vocabularies
and the harmonised classes and concepts.

Usage

new_mapping(
new = NULL,
target,
source = NULL,
lut = NULL,
match = NULL,
certainty = NULL,
type = "concept",
ontology = NULL,
matchDir = NULL,
verbose = FALSE,
beep = NULL

)

Arguments

new character(.)
the english external label(s) that shall be mapped to labels that do already exist
in the ontology.

target data.frame(.)
the already harmonised English label(s) to which the external labels shall be
mapped.

source character(1)
any character uniquely identifying the source dataset of the new label.

lut character(.)
in case the terms used for mapping are from a look up table (i.e. a standardised
set of terms with a description), provide this table with column names ’label’
and ’ description’ here.

12 new_mapping

match character(1)
the skos mapping property used to describe the link, possible values are "close",
"exact", "broad" and "narrow".

certainty integerish(1)
the certainty of the match. Possible values are between 1 and 4, with meaning

• 1 = probably unreliable
• 2 = unclear, assigned according to a given definition
• 3 = clear, assigned according to a given definition
• 4 = original, harmonised term (can’t be assigned by a user)

.

type character(1)
whether the new labels are mapped to a "concept", or to a "class".

ontology ontology(1)
either a path where the ontology is stored, or an already loaded ontology.

matchDir character(1)
the directory where to store source-specific matching tables.

verbose logical(1)
whether or not to give detailed information on the process of this function.

beep integerish(1)
Number specifying what sound to be played to signal the user that a point of
interaction is reached by the program, see beep.

Value

No return value, called for the side effect of adding new mappings to an ontology.

Examples

ontoDir <- system.file("extdata", "crops.rds", package = "ontologics")
onto <- load_ontology(path = ontoDir)

mapping <- data.frame(old = c("BIOENERGY CROPS", "Bioenergy woody",
"Other bioenergy crops"),

new = c("bioenergy plants", "Wood plantation for fuel",
"Algae for bioenergy"),

type = c("close", "broader", "broader"))

onto <- new_source(name = "externalDataset",
version = "0.0.1",
description = "a vocabulary",
homepage = "https://www.something.net",
license = "CC-BY-0",
ontology = onto)

onto <- get_concept(table = data.frame(label = mapping$old), ontology = onto) %>%
new_mapping(new = mapping$new,

target = .,
match = mapping$type,

https://www.w3.org/TR/skos-reference/#mapping

new_source 13

source = "externalDataset",
certainty = 3,
ontology = onto)

new_source Add a new valid source to an ontology

Description

Add a new valid source to an ontology

Usage

new_source(
ontology = NULL,
name = NULL,
version = NULL,
date = NULL,
description = NULL,
homepage = NULL,
uri_prefix = NULL,
license = NULL,
notes = NULL

)

Arguments

ontology ontology(1)
either a path where the ontology is stored, or an already loaded ontology into
which the new source should be included.

name character(1)
the name of the new source (must not contain empty spaces).

version character(1)
an optional version of the new source (any value is allowed, but should be a
value that follows semantic versioning). Either version or date need to be given.

date character(1)
an optional date at which that version of an external vocabulary has been created.
Should be a value of the form YYYY-MM-DD. Either version or date need to
be given.

description character(1)
a verbatim description of the new source.

homepage character(1)
the homepage of the new source, typically the place where additional informa-
tion or meta-data could be retrieved in a non-formalised way.

https://semver.org/

14 onto-class

uri_prefix character(1)
the basic uniform resource locator (URL) all concepts of a new source have in
common and which is thus the basis to construct the concept specific URI.

license character(1)
the licenses under which the new source is published.

notes character(1)
any notes on the new source that don’t fit into any of the other meta-data fields
here.

Details

Fundamentally, there are two types of sources that can be defined with this function.

• attribute collections: where a collection of terms or concepts are associated as a descriptive
attribute to the harmonised concepts, and

• linked open data: where the concepts that occur in another vocabulary or ontology and which
are themselves part of linked datasets (and hence have a valid URI) are associated as related
concepts to the harmonised concepts.

In the latter case, each mapped concept should be provided by its ID and the source needs to have a
URL that allows in combination with the concept IDs to construct the URI under which the mapped
concepts are stored in the semantic web.

Value

the updated ontology that contains the new source defined here.

Examples

ontoDir <- system.file("extdata", "crops.rds", package = "ontologics")
onto <- load_ontology(path = ontoDir)

onto <- new_source(name = "externalDataset",
version = "0.0.1",
description = "a vocabulary",
homepage = "https://www.something.net",
license = "CC-BY-0",
ontology = onto)

onto-class Ontology class (S4) and methods

Description

Ontology class (S4) and methods

show,onto-method 15

Slots

sources data.frame(.)

classes data.frame(.)

concepts data.frame(.)

show,onto-method Print onto in the console

Description

Print onto in the console

Usage

S4 method for signature 'onto'
show(object)

Arguments

object object to show.

start_ontology Start an ontology

Description

Start an ontology

Usage

start_ontology(
name = NULL,
version = NULL,
path = NULL,
code = ".xx",
description = NULL,
homepage = NULL,
uri_prefix = NULL,
license = NULL,
notes = NULL

)

16 start_ontology

Arguments

name character(1)
the path of the ontology.

version character(1)
the version of the ontology.

path character(1)
the path where the ontology shall be stored.

code double(1)
format of a single code snippet that is concatenated for nested levels.

description character(1)
a brief description of the new ontology.

homepage character(1)
the URL to the homepage of the new ontology.

uri_prefix character(1)
the basic URL to construct URIs for all concepts.

license character(1)
any string describing the license under which this ontology can be (re)used.

notes character(1)
any notes that might apply to this ontology.

Value

it returns the new, empty ontology and also stores that within the directory specified in path.

Examples

start_ontology(name = "crops", path = tempdir())

Index

beep, 3, 12

character(.), 9, 11
character(1), 2, 3, 5, 7, 8, 11–14, 16

data.frame(.), 2, 9, 11, 15
double(1), 16

edit_matches, 2
export_as_rdf, 3

get_class, 4
get_concept, 5
get_source, 6

integerish(1), 3, 12

left_join, 6
load_ontology, 7
logical(1), 3–6, 12

make_tree, 8

new_class, 8
new_concept, 9
new_mapping, 2, 11
new_source, 13

onto (onto-class), 14
onto-class, 14
ontology(1), 2–5, 7–9, 12, 13

show,onto-method, 15
start_ontology, 15
str_detect, 6

tibble(1), 8

17

	edit_matches
	export_as_rdf
	get_class
	get_concept
	get_source
	load_ontology
	make_tree
	new_class
	new_concept
	new_mapping
	new_source
	onto-class
	show,onto-method
	start_ontology
	Index

