Package website: release
Collection of search spaces for hyperparameter tuning. Includes various search spaces that can be directly applied to an mlr3
learner. Additionally, meta information about the search space can be queried.
Install the development version from GitHub:
library(mlr3tuningspaces)
# tune learner with default search space
instance = tune(
method = "random_search",
task = tsk("pima"),
learner = lts(lrn("classif.rpart")),
resampling = rsmp ("holdout"),
measure = msr("classif.ce"),
term_evals = 10
)
# best performing hyperparameter configuration
instance$result
## minsplit minbucket cp learner_param_vals x_domain classif.ce
## 1: 4.174471 0.5070691 -4.542023 <list[4]> <list[3]> 0.1953125
## key learner n_values
## 1: classif.glmnet.rbv2 classif.glmnet 2
## 2: classif.kknn.rbv2 classif.kknn 1
## 3: classif.ranger.default classif.ranger 3
## 4: classif.ranger.rbv2 classif.ranger 7
## 5: classif.rpart.default classif.rpart 3
## 6: classif.rpart.rbv2 classif.rpart 4
## 7: classif.svm.default classif.svm 4
## 8: classif.svm.rbv2 classif.svm 5
## 9: classif.xgboost.default classif.xgboost 9
## 10: classif.xgboost.rbv2 classif.xgboost 13
## 11: regr.glmnet.rbv2 regr.glmnet 2
## 12: regr.kknn.rbv2 regr.kknn 1
## 13: regr.ranger.default regr.ranger 3
## 14: regr.ranger.rbv2 regr.ranger 6
## 15: regr.rpart.default regr.rpart 3
## 16: regr.rpart.rbv2 regr.rpart 4
## 17: regr.svm.default regr.svm 4
## 18: regr.svm.rbv2 regr.svm 5
## 19: regr.xgboost.default regr.xgboost 9
## 20: regr.xgboost.rbv2 regr.xgboost 13
# get tuning space and view tune token
tuning_space = lts("classif.rpart.default")
tuning_space$values
## $minsplit
## Tuning over:
## range [2, 128] (log scale)
##
##
## $minbucket
## Tuning over:
## range [1, 64] (log scale)
##
##
## $cp
## Tuning over:
## range [1e-04, 0.1] (log scale)
# get learner with tuning space
learner = tuning_space$get_learner()
# tune learner
instance = tune(
method = "random_search",
task = tsk("pima"),
learner = learner,
resampling = rsmp ("holdout"),
measure = msr("classif.ce"),
term_evals = 10)
instance$result
## minsplit minbucket cp learner_param_vals x_domain classif.ce
## 1: 3.009338 2.506336 -8.291878 <list[4]> <list[3]> 0.2421875