mllrnrs: R6-Based ML Learners for 'mlexperiments'

Enhances 'mlexperiments' <> with additional machine learning ('ML') learners. The package provides R6-based learners for the following algorithms: 'glmnet' <>, 'ranger' <>, 'xgboost' <>, and 'lightgbm' <>. These can be used directly with the 'mlexperiments' R package.

Version: 0.0.4
Depends: R (≥ 3.6)
Imports: data.table, kdry, mlexperiments, R6, stats
Suggests: glmnet, lightgbm (≥ 4.0.0), lintr, mlbench, mlr3measures, ParBayesianOptimization, quarto, ranger, splitTools, testthat (≥ 3.0.1), xgboost
Published: 2024-07-05
DOI: 10.32614/CRAN.package.mllrnrs
Author: Lorenz A. Kapsner ORCID iD [cre, aut, cph]
Maintainer: Lorenz A. Kapsner <lorenz.kapsner at>
License: GPL (≥ 3)
NeedsCompilation: no
SystemRequirements: Quarto command line tools (
CRAN checks: mllrnrs results


Reference manual: mllrnrs.pdf
Vignettes: glmnet: Binary Classification
glmnet: Multiclass Classification
glmnet: Regression
lightgbm: Binary Classification
lightgbm: Multiclass Classification
lightgbm: Regression
ranger: Binary Classification
ranger: Multiclass Classification
ranger: Regression
xgboost: Binary Classification
xgboost: Multiclass Classification
xgboost: Regression


Package source: mllrnrs_0.0.4.tar.gz
Windows binaries: r-devel:, r-release:, r-oldrel:
macOS binaries: r-release (arm64): mllrnrs_0.0.4.tgz, r-oldrel (arm64): mllrnrs_0.0.3.tgz, r-release (x86_64): mllrnrs_0.0.4.tgz, r-oldrel (x86_64): mllrnrs_0.0.3.tgz
Old sources: mllrnrs archive

Reverse dependencies:

Reverse imports: mlsurvlrnrs


Please use the canonical form to link to this page.