jordan: A Suite of Routines for Working with Jordan Algebras

A Jordan algebra is an algebraic object originally designed to study observables in quantum mechanics. Jordan algebras are commutative but non-associative; they satisfy the Jordan identity. The package follows the ideas and notation of K. McCrimmon (2004, ISBN:0-387-95447-3) "A Taste of Jordan Algebras". To cite the package in publications, please use Hankin (2023) <doi:10.48550/arXiv.2303.06062>.

Version: 1.0-6
Depends: onion (≥ 1.4-0), Matrix
Imports: quadform, methods
Suggests: knitr, rmarkdown
Published: 2024-07-04
DOI: 10.32614/CRAN.package.jordan
Author: Robin K. S. Hankin ORCID iD [aut, cre]
Maintainer: Robin K. S. Hankin <hankin.robin at>
License: GPL-2 | GPL-3 [expanded from: GPL (≥ 2)]
NeedsCompilation: no
Citation: jordan citation info
Materials: README NEWS
In views: NumericalMathematics
CRAN checks: jordan results


Reference manual: jordan.pdf
Vignettes: jordan


Package source: jordan_1.0-6.tar.gz
Windows binaries: r-devel:, r-release:, r-oldrel:
macOS binaries: r-release (arm64): jordan_1.0-6.tgz, r-oldrel (arm64): jordan_1.0-6.tgz, r-release (x86_64): jordan_1.0-6.tgz, r-oldrel (x86_64): jordan_1.0-6.tgz
Old sources: jordan archive


Please use the canonical form to link to this page.