Package ‘gips’

October 13, 2022
Type Package
Title Gaussian Model Invariant by Permutation Symmetry
Version 1.0.0

Description Find the permutation symmetry group such that the covariance
matrix of the given data is invariant under it. Discovering such
a permutation decreases the number of observations needed to fit
a Gaussian model, which is of great use when it is smaller than
the number of variables. Even if that is not the case, the covariance
matrix found with 'gips' approximates the actual covariance with less
statistical error. The methods implemented in this package are
described in Graczyk et al. (2022) <doi:10.1214/22-A0S2174>.

License GPL (>=3)
URL https://github.com/PrzeChoj/gips, https://przechoj.github.io/gips/

BugReports https://github.com/PrzeChoj/gips/issues
Depends R (>=3.5.0)
Imports numbers, permutations, rlang, utils

Suggests DAAG, dplyr, ggplot2, graphics, HSAUR, knitr, MASS (>=
7.3-39), rmarkdown, spelling, stringi, testthat (>= 3.0.0),
tibble, tidyr, withr

VignetteBuilder knitr
Config/testthat/edition 3
Encoding UTF-8
Language en-US
RoxygenNote 7.2.1
NeedsCompilation no

Author Przemystaw Chojecki [aut, cre],
Pawetl Morgen [aut],
Bartosz Kotodziejek [aut] (<https://orcid.org/0000-0002-5220-9012>)

Maintainer Przemystaw Chojecki <premysl.choj@gmail.com>
Repository CRAN
Date/Publication 2022-10-13 17:42:33 UTC

https://doi.org/10.1214/22-AOS2174
https://github.com/PrzeChoj/gips
https://przechoj.github.io/gips/
https://github.com/PrzeChoj/gips/issues
https://orcid.org/0000-0002-5220-9012

2

as.character.gips_perm

R topics documented:

Index

as.character.gips_perm e 2
calculate_gamma_functiono L 3
compare_posteriories_of_perms 4
find_ MAP 6
forget_perms e e e 9
get_probabilities_from_gips L 10
geL_Structure_CONStants v v v vt e e e e e e e e e 11
EIPS o e e 12
GIPS_PETIN o o i e e e e e e e e e 14
log_posteriori_of_gips 16
PIOL.ZIPS . . o o o e e e e e 17
prepare_orthogonal_matrix L o 19
Print.gIPS e e 21
Print.EIPS_PErm o i o e e e e e e e e e e e e e 22
PrOject_matriX e e e e 22
SUMMATY.ZIPS « « v v v v v e e e e e e e e e e e e e e e 24

28

as.character.gips_perm

Transform gips_perm object to character vector

Description

Implementation of S3 method.

Usage

S3 method for class 'gips_perm'
as.character(x, ...)

Arguments
X An object of a gips_perm class.
Further arguments passed to permutations::as.character.cycle().
Value

Returns an object of a character type.

Methods (by class)

* as.character(gips_perm):

calculate_gamma_function 3

See Also

permutations::as.character.cycle()

Examples

g_perm <- gips_perm(permutations::as.cycle(”(5,4)"), 5)
as.character(g_perm)

calculate_gamma_function
Calculate Gamma function

Description
It calculates the value of the integral defined in Definition 11 from references. It is implementation
of the Theorem 8 from references and is using the formula (19) from references.

Usage

calculate_gamma_function(perm, lambda)

Arguments
perm An object of a gips_perm class.
lambda A positive real number.

Value

Returns the value of the Gamma function of the colored cone (for definition of colored cone see
Basic definitions section in vignette("Theory"”, package = "gips") or in its pkgdown page).

References

Piotr Graczyk, Hideyuki Ishi, Bartosz Kotodziejek, Hélene Massam. "Model selection in the space
of Gaussian models invariant by symmetry." The Annals of Statistics, 50(3) 1747-1774 June 2022.
arXiv link; doi: 10.1214/22A0S2174

See Also

e get_structure_constants() - The function useful inside the calculate_gamma_function()
function.

* log_posteriori_of_gips() - The function that uses the values of the gamma function cal-
culable with calculate_gamma_function().

* vignette("Theory”, package = "gips") or its pkgdown page - A place to learn more about
the math behind the gips package.

https://arxiv.org/abs/2004.03503
https://arxiv.org/abs/2004.03503
https://arxiv.org/abs/2004.03503
https://przechoj.github.io/gips/articles/Theory.html
https://arxiv.org/abs/2004.03503
https://doi.org/10.1214/22-AOS2174
https://przechoj.github.io/gips/articles/Theory.html

4 compare_posteriories_of_perms

Examples

id_perm <- gips_perm(permutations::id, 2)
calculate_gamma_function(id_perm, 0.5001) # 10.7...
calculate_gamma_function(id_perm, ©.50000001) # 19.9...
calculate_gamma_function(id_perm, 0.500000000001) # 29.1...

try(calculate_gamma_function(id_perm, 0.5))
Error, integral diverges; returns Inf and warning

compare_posteriories_of_perms
Compare the posteriori probabilities of 2 permutations

Description

Check which permutation is more likely and how much more likely.

Usage
compare_posteriories_of_perms(
perml,
perm2 = "()",
S = NULL,
number_of_observations = NULL,
delta = 3,

D_matrix = NULL,
was_mean_estimated = TRUE,
print_output = TRUE

)
compare_log_posteriories_of_perms(
perml,
perm2 = "()",
S = NULL,
number_of_observations = NULL,
delta = 3,

D_matrix = NULL,
was_mean_estimated = TRUE,
print_output = TRUE

Arguments

perml, perm2 Permutations to compare. How many times perm1 is more likely than perm2?
Those can be provided as the gips object, the gips_perm object or anything that
can be used as the x parameter in the gips_perm() function. They do not have
to be of the same class.

compare_posteriories_of_perms 5

S, number_of_observations, delta, D_matrix, was_mean_estimated
The same parameters as in the gips() function. If at least one of perm1 or
perm2 is of a gips class, they overwritten with those from gips object.

print_output A boolean. When TRUE, the computed value will be printed with additional
text and returned invisibly. When FALSE, the computed value will be returned
visibly.

Value

compare_posteriories_of_perms returns the value of how many times the perm1 is more likely
than perm2.

compare_log_posteriories_of_perms returns the logarithm of how many times the perm1 is
more likely than perm2.

Functions

* compare_log_posteriories_of_perms(): More stable, logarithmic version of compare_posteriories_of_perms.
The natural logarithm is used.

See Also

e print.gips() - The function that prints the posterior of the optimized gips object compared
to the starting permutation.

e summary.gips() - The function that calculates the posterior of the optimized gips object
compared to the starting permutation.

Examples

require("MASS") # for mvrnorm()

perm_size <- 6
mu <- runif(6, -10, 10) # Assume we don't know the mean
sigma_matrix <- matrix(

data = c(
1.0, 0.8, 0.6, 0.4, 0.6, 0.8,
0.8, 1.0, 0.8, 0.6, 0.4, 0.6,
0.6, 0.8, 1.0, 0.8, 0.6, 0.4,
0.4, 0.6, 0.8, 1.0, 0.8, 0.6,
0.6, 0.4, 0.6, 0.8, 1.0, 0.8,
0.8, 0.6, 0.4, 0.6, 0.8, 1.0

’ ’ ’ ’ ’

),

nrow = perm_size, byrow = TRUE
) # sigma_matrix is a matrix invariant under permutation (1,2,3,4,5,6)
number_of_observations <- 13
Z <- MASS::mvrnorm(number_of_observations, mu = mu, Sigma = sigma_matrix)
S <- cov(Z) # Assume we have to estimate the mean

g <- gips(S, number_of_observations)
g_map <- find_MAP(g, max_iter = 10, show_progress_bar = FALSE, optimizer = "Metropolis_Hastings")

6 find_ MAP

compare_posteriories_of_perms(g_map, g, print_output = FALSE)
compare_log_posteriories_of_perms(g_map, g, print_output = FALSE)

find_MAP Find the Maximum A Posteriori Estimation

Description

Use one of the optimization algorithms to find the permutation that maximizes a posteriori proba-
bility based on observed data. Not all optimization algorithms will always find the MAP, but they
try to find a significant value. More information can be found in the "Possible algorithms to use
as optimizers" section below.

Usage

find_MAP(
g,
max_iter = NA,
optimizer = NA,
show_progress_bar = TRUE,
save_all_perms = FALSE,
return_probabilities = FALSE

)
Arguments
g Object of a gips class
max_iter Number of iterations for an algorithm to perform. Atleast 2. For optimizer="MH"
it has to be finite; for optimizer="HC" it can be infinite; for optimizer="BF"
it is not used.
optimizer The optimizer for the search of the maximum posteriori.

e "MH" (the default for unoptimized g) - Metropolis-Hastings

e "HC" - Hill Climbing

* "BF" - Brute Force

* "continue” (the default for optimized g) - The same as the g was optimized
by (see Examples).

For more details, see the "Possible algorithms to use as optimizers" section
below.

show_progress_bar
A boolean. Indicate whether or not to show the progress bar.

¢ When max_iter is infinite, show_progress_bar has to be FALSE.

e When return_probabilities=TRUE, then shows an additional progress
bar for the time when the probabilities are calculated

save_all_perms A boolean. TRUE indicates to save a list of all permutations that were visited
during optimization. This can be useful, but need a lot more RAM.

find MAP 7

return_probabilities
A boolean. TRUE can only be provided when save_all_perms is TRUE and for:

e optimizer="MH" - use Metropolis-Hastings results to estimate posterior
probabilities
* optimizer="BF" - use brute force results to calculate exact posterior prob-
abilities
This additional calculations are costly, so second progress bar is shown (when
show_progress_bar is TRUE).

To examine probabilities after optimization, call get_probabilities_from_gips().

Details

find_MAP can produce a warning when:

* the optimizer "hill_climbing" gets to the end of its max_iter without converging.

* the optimizer will find the permutation with smaller n@ than number_of_observations (for
more information on what it means, see C'o and n@ section in vignette("Theory”, package
="gips") orin its pkgdown page).

Value

Returns an optimized object of a gips class.

Possible algorithms to use as optimizers

For a more in-depth explanations, see vignette("Optimizers”, package = "gips") orinits pkg-
down page).

For every algorithm, there are some aliases available.

e "Metropolis_Hastings", "MH" - use the Metropolis-Hastings algorithm; see Wikipedia.
The algorithm will draw a random transposition in every iteration and consider changing the
current state (permutation). When the max_iter is reached, the algorithm will return the best
permutation calculated so far as the MAP Estimator. This implements the Second approach
from references, section 4.1.2. This algorithm used in this context is a special case of the
Simulated Annealing the reader may be more familiar with; see Wikipedia.

e "hill_climbing”, "HC" - use the hill climbing algorithm; see Wikipedia. The algorithm
will check all transpositions in every iteration and go to the one with the biggest a posteriori
value. The optimization ends when all neighbors will have a smaller a posteriori value. If the
max_iter is reached before the end, then the warning is shown, and it is recommended to start
the optimization again on the output of the find_MAP (). Remember that there are p*(p-1)/2
transpositions to be checked in every iteration. For bigger p, this may be costly.

* "brute_force”, "BF", "full” - use the Brute Force algorithm that checks the whole per-
mutation space of a given size. This algorithm will definitely find the actual Maximum A
Posteriori Estimation but is very computationally expensive for bigger spaces.

https://przechoj.github.io/gips/articles/Theory.html
https://przechoj.github.io/gips/articles/Optimizers.html
https://przechoj.github.io/gips/articles/Optimizers.html
https://en.wikipedia.org/wiki/Metropolis%E2%80%93Hastings_algorithm
https://arxiv.org/abs/2004.03503
https://arxiv.org/abs/2004.03503
https://en.wikipedia.org/wiki/Simulated_annealing
https://en.wikipedia.org/wiki/Hill_climbing

8 find_ MAP

References

Piotr Graczyk, Hideyuki Ishi, Bartosz Kotodziejek, Hélene Massam. "Model selection in the space
of Gaussian models invariant by symmetry." The Annals of Statistics, 50(3) 1747-1774 June 2022.
arXiv link; doi: 10.1214/22A0S2174

See Also

* gips() - The constructor of a gips class. The gips object is used as the g parameter.
* plot.gips() - Practical plotting function for visualizing the optimization process.
e summary.gips() - The function that summarizes the output of optimization.

e get_probabilities_from_gips() - When find_MAP(return_probabilities = TRUE) was
called, then those probabilities can be extracted with this function.

* log_posteriori_of_gips() - The function that the optimizers of find_MAP() tries to find
the argmax of.

» forget_perms() - When the gips object was optimized with find_MAP(save_all_perms =
TRUE), it will be of considerable size in RAM. forget_perms can make such an object lighter
in memory by forgetting the permutations that it was in.

e vignette("Optimizers"”, package = "gips") or its pkgdown page) - A place to learn more
about the available optimizers.

» vignette("Theory”, package = "gips") orits pkgdown page) - A place to learn more about
the math behind the gips package.

Examples

require("MASS") # for mvrnorm()

perm_size <- 5
mu <- runif(perm_size, -10, 10) # Assume we don't know the mean
sigma_matrix <- matrix(

data = c(
1.0, 0.8, 0.6, 0.6, 0.8,
0.8, 1.0, 0.8, 0.6, 0.6,
0.6, 0.8, 1.0, 0.8, 0.6,
0.6, 0.6, 2.8, 1.0, 0.8,
0.8, 0.6, 0.6, 0.8, 1.0
),

nrow = perm_size, byrow = TRUE
) # sigma_matrix is a matrix invariant under permutation (1,2,3,4,5)
number_of_observations <- 13
Z <- MASS::mvrnorm(number_of_observations, mu = mu, Sigma = sigma_matrix)
S <- cov(Z) # Assume we have to estimate the mean

g <- gips(S, number_of_observations)

g_map <- find_MAP(g, max_iter = 5, show_progress_bar = FALSE, optimizer = "Metropolis_Hastings")
g_map

g_map2 <- find_MAP(g_map, max_iter = 5, show_progress_bar = FALSE, optimizer = "continue")

https://arxiv.org/abs/2004.03503
https://doi.org/10.1214/22-AOS2174
https://przechoj.github.io/gips/articles/Optimizers.html
https://przechoj.github.io/gips/articles/Theory.html

forget_perms 9

if (require(”graphics”)) {
plot(g_map2, type = "both"”, logarithmic_x = TRUE)
}

g_map_BF <- find_MAP(g, show_progress_bar = FALSE, optimizer = "brute_force")
summary (g_map_BF)

forget_perms Forget the permutations for gips object optimized with
save_all_perms = TRUE

Description
Slim the gips object by forgetting the visited permutations from find_MAP(save_all_perms =
TRUE).

Usage
forget_perms(g)

Arguments

g An object of class "gips"; a result of a find_MAP (save_all_perms = TRUE).

Details

For perm_size = 150 and max_iter = 150000 we checked it saves ~350 MB.

Value

Returns the same object g as given, but without the visited permutation list.

See Also

e find_MAP() - The forget_perms() is called on the output of find_MAP(save_all_perms =
TRUE).

Examples

example_matrix <- matrix(rnorm(1@ x 10), nrow = 10)
S <- t(example_matrix) %*% example_matrix
g <- gips(S, 13, was_mean_estimated = FALSE)
g_map <- find_MAP(g,
max_iter = 10, optimizer = "Metropolis_Hastings",
show_progress_bar = FALSE, save_all_perms = TRUE

)

object.size(g_map) # ~18 KB
g_map_slim <- forget_perms(g_map)
object.size(g_map_slim) # ~8 KB

10 get_probabilities_from_gips

get_probabilities_from_gips
Extract probabilities for gips object optimized with
return_probabilities = TRUE

Description

After the gips object was optimized with find_MAP() function with return_probabilities =
TRUE, then those calculated probabilities can be extracted with this function.

Usage

get_probabilities_from_gips(g)

Arguments
g An object of class "gips"; a result of a find_MAP(return_probabilities =
TRUE).
Value

Returns a numeric vector, calculated values of probabilities. Names contains permutations this
probability represent. For gips object optimized with find_MAP(return_probabilities = FALSE),
returns a NULL object.

See Also

e find_MAP() - The get_probabilities_from_gips() is called on the output of find_MAP(return_probabilities
=TRUE, save_all_perms = TRUE).

e vignette("Optimizers"”, package = "gips") or its pkgdown page) - A place to learn more
about the available optimizers.

Examples

g <- gips(matrix(c(1, 0.5, 0.5, 1.3), nrow = 2), 13, was_mean_estimated = FALSE)
g_map <- find_MAP(g,

optimizer = "BF", show_progress_bar = FALSE,

return_probabilities = TRUE, save_all_perms = TRUE

)

get_probabilities_from_gips(g_map)

https://przechoj.github.io/gips/articles/Optimizers.html

get_structure_constants 11

get_structure_constants
Get Structure Constants

Description

Finds constants that are necessary for internal calculations of integrals and eventually the posteriori
probability in log_posteriori_of_gips().

Usage

get_structure_constants(perm)

Arguments

perm An object of a gips_perm class.

Details

Uses the Theorem 5 from references to calculate the constants.

Value

Returns a list of 5 items: r, d, k, L, dim_omega - vectors of constants from Theorem 1 from refer-
ences and the beginning of section 3.1. from references.

References

Piotr Graczyk, Hideyuki Ishi, Bartosz Kotodziejek, Hélene Massam. "Model selection in the space
of Gaussian models invariant by symmetry." The Annals of Statistics, 50(3) 1747-1774 June 2022.
arXiv link; doi: 10.1214/22A0S2174

See Also
e calculate_gamma_function(), log_posteriori_of_gips() - The functions that rely heav-

ily on get_structure_constants().

Examples

perm <- gips_perm(permutations::as.word(c(1, 2, 3, 5, 4)), 5)
get_structure_constants(perm)

https://arxiv.org/abs/2004.03503
https://arxiv.org/abs/2004.03503
https://arxiv.org/abs/2004.03503
https://arxiv.org/abs/2004.03503
https://arxiv.org/abs/2004.03503
https://doi.org/10.1214/22-AOS2174

12 gips

gips The constructor of a gips class.

Description

Create a gips object. This object will consist of data and all other information needed to find the
most likely invariant permutation. The optimization itself will not be performed. One must call the
find_MAP() function to do it. See examples below.

Usage
gips(
S,
number_of_observations,
delta = 3,

D_matrix = NULL,
was_mean_estimated = TRUE,
per,m = nn

new_gips(
list_of_gips_perm,
S,
number_of_observations,
delta,
D_matrix,
was_mean_estimated,
optimization_info

validate_gips(g)

Arguments

S A matrix; estimated covariance matrix. When Z is the observed data:

« if one does not know the theoretical mean and has to estimate it with the ob-
served mean, use S = cov(Z), and leave parameter was_mean_estimated =
TRUE as default.

¢ if one know the theoretical meanis 0, use S = (t(Z) %*% Z) / number_of_observations,
and set parameter was_mean_estimated = FALSE;

number_of_observations
A number of data points that S is based on.

delta A number, hyper-parameter of a Bayesian model. Has to be bigger than 2. See
Hyperparameters section bellow.

gips 13

D_matrix A symmetric, positive-definite matrix of the same size as S. Hyper-parameter of
a Bayesian model. When NULL, the identity matrix is taken. See Hyperparam-
eters section bellow.

was_mean_estimated
A boolean.

* Set TRUE (default) when your S parameter is a result of a stats::cov()
function.

* Set FALSE when your S parameter is aresult of a (t(Z) %*% Z) / number_of_observations

calculation.
perm An optional permutation to be the base for the gips object. Can be of a gips_perm
or apermutation class, or anything the function permutations: :permutation()
can handle.

list_of_gips_perm
A list with a single element of a gips_perm class. The base object for the gips
object.

optimization_info
For internal use only. NULL or the list with information about the optimization
process.

g Object to be checked whether it is proper object of a gips class.

Value
gips() returns an object of a gips class after the safety checks.

new_gips() returns an object of a gips class without the safety checks.

validate_gips() returns its argument unchanged. If the argument is not a proper element of a
gips class, it produces an error.

Functions

* new_gips(): Constructor. Only intended for low-level use.

* validate_gips(): Validator. Only intended for low-level use.

Methods for a gips class
e summary.gips()
e plot.gips()
e print.gips()

Hyperparameters

In the Bayesian model, the prior distribution for the covariance matrix is a generalized case of
Wishart distribution.

For brief introduction, see Bayesian model selection section in vignette("Theory”, package =
"gips") orin its pkgdown page).

https://en.wikipedia.org/wiki/Wishart_distribution
https://przechoj.github.io/gips/articles/Theory.html

14 gips_perm

See Also

e stats::cov() - The S parameter is most of the time an estimated covariance matrix, so a
result of the cov() function. For more information, see Wikipedia - Estimation of covariance
matrices.

e find_MAP() - The function that finds the Maximum A Posteriori (MAP) Estimator for a given
gips object.

* gips_perm() - The constructor of a gips_perm class. The gips_perm object is used as the

base object for the gips object. To be more precise, the base object for gips is a one-element
list of a gips_perm object.

Examples

require("MASS") # for mvrnorm()

perm_size <- 5
mu <- runif(5, -10, 10) # Assume we don't know the mean
sigma_matrix <- matrix(

data = c(
1.0, 0.8, 0.6, 0.6, 0.8,
0.8, 1.0, 0.8, 0.6, 0.6,
0.6, 0.8, 1.0, 0.8, 0.6,
0.6, 0.6, 0.8, 1.0, 0.8,
0.8, 0.6, 0.6, 0.8, 1.0

’ ’ ’ ’

),

nrow = perm_size, byrow = TRUE
) # sigma_matrix is a matrix invariant under permutation (1,2,3,4,5)
number_of_observations <- 13
Z <= MASS::mvrnorm(number_of_observations, mu = mu, Sigma = sigma_matrix)
S <- cov(Z) # Assume we have to estimate the mean

g <- gips(S, number_of_observations)

g_map <- find_MAP(g, show_progress_bar = FALSE, optimizer = "brute_force")
g_map

summary (g_map)
if (require(”graphics”)) {

plot(g_map, type = "both”, logarithmic_x = TRUE)
}

gips_perm Permutation object

Description

Create permutation objects to be passed to other functions of the gips package.

https://en.wikipedia.org/wiki/Estimation_of_covariance_matrices
https://en.wikipedia.org/wiki/Estimation_of_covariance_matrices

gips_perm 15
Usage

gips_perm(x, size)

new_gips_perm(rearranged_cycles, size)

validate_gips_perm(g)

Arguments
X An object created with a permutations package or any object that can be pro-
cessed with the permutations: :permutation() function.
size An integer. Size of a permutation (AKA cardinality of a set, on which permuta-

tion is defined; see examples).

rearranged_cycles
A list of rearranged integer vectors. Each vector corresponds to a single cycle
of a permutation.

g Object to be checked whether it is a proper object of a gips_perm class.

Value
gips_perm() returns an object of a gips_perm class after the safety checks.
new_gips_perm() returns an object of a gips_perm class without the safety checks.

validate_gips_perm() returns its argument unchanged. If the argument is not a proper element
of a gips_perm class, it produces an error.

Functions

* new_gips_perm(): Constructor. Only intended for low-level use.

* validate_gips_perm(): Validator. Only intended for low-level use.

Methods for a gips class

e as.character.gips_perm()

e print.gips_perm()

See Also

* permutations: :permutation() - The constructor for the x parameter.

* gips() - The constructor for the gips class uses the gips_perm object as the base object.

Examples

gperm <- gips_perm(permutations::as.word(c(1, 2, 3, 5, 4)), 5)
gperm <- gips_perm(permutations::as.cycle("(5,4)"), 5)

note the necessity of ‘size‘ parameter

gperm <- gips_perm(permutations::as.cycle("(5,4)"), 7)

gperm <- gips_perm("(1,2)(5,4)", 7)

16 log_posteriori_of_gips

gperm

try(gperm <- gips_perm(permutations::as.cycle(”(5,4)"), 3))
Error, ‘size‘ equals 3 while the maximum element is 5.

log_posteriori_of_gips
A log of a posteriori that the covariance matrix is invariant under
permutation

Description

More precisely, it is the logarithm of an unnormalized posterior probability. It is the goal function
for optimization algorithms in find_MAP() function. The perm_proposal that maximizes this
function is the Maximum A Posteriori (MAP) Estimator.

Usage

log_posteriori_of_gips(g)

Arguments

g An object of a gips_perm class.

Details

It is calculated using formulas (33) and (27) from references.

If Inf or NaN is reached, it produces a warning.

Value

Returns a value of the logarithm of an unnormalized A Posteriori.

References

Piotr Graczyk, Hideyuki Ishi, Bartosz Kotodziejek, Hélene Massam. "Model selection in the space
of Gaussian models invariant by symmetry." The Annals of Statistics, 50(3) 1747-1774 June 2022.
arXiv link; doi: 10.1214/22A0S2174

See Also

e calculate_gamma_function() - The function that calculates the value needed for log_posteriori_of_gips().
* find_MAP() - The functions that tries to optimize the log_posteriori_of_gips function.

* vignette("Theory”, package = "gips") or its pkgdown page - A place to learn more about
the math behind the gips package.

https://arxiv.org/abs/2004.03503
https://arxiv.org/abs/2004.03503
https://doi.org/10.1214/22-AOS2174
https://przechoj.github.io/gips/articles/Theory.html

plot.gips

Examples

In the space with p = 2, there is only 2 permutations:

perml <- permutations::as.cycle(permutations::as.word(c(1, 2))) # (1)(2)
perm2 <- permutations::as.cycle(permutations::as.word(c(2, 1))) # (1,2)

S1 <- matrix(c(1, 0.5, 0.5, 2), nrow = 2, byrow = TRUE)

gl <- gips(S1, 100, perm
g2 <- gips(S1, 100, perm

log_posteriori_of_gips(gl) # -136.6, this is the MAP Estimator

perml)
perm2)

log_posteriori_of_gips(g2) # -140.4

exp(log_posteriori_of_gips(gl) - log_posteriori_of_gips(g2)) # 41.3

g1 is over 40 times more likely than g2.

This is the expected outcome because S[1,1] significantly differs from S[2,2].

#

S2 <- matrix(c(1, 0.5, 0.5, 1.1), nrow = 2, byrow = TRUE)

gl <- gips(S2, 100, perm
g2 <- gips(S2, 100, perm

perml)
perm2)

log_posteriori_of_gips(gl) # -99.5
log_posteriori_of_gips(g2) # -96.9, this is the MAP Estimator

exp(log_posteriori_of_gips(g2) - log_posteriori_of_gips(gl)) # 12.7

g2 is over 12 times more likely than g1.

This is the expected outcome because S[1,1] is very close to S[2,2].

17

plot.gips

Plot optimized matrix or optimization gips object

Description

Plot the heatmap of the MAP covariance matrix estimator or the convergence of the optimization
method. The plot depends on the type argument.

Usage
S3 method for class 'gips'
plot(
X’
type = NA,

logarithmic_y

color = NULL,

TRUE,
logarithmic_x = FALSE,

title_text = "Convergence plot”,

xlabel = NULL,
ylabel = NULL,
show_legend = TRUE,
ylim = NULL,

18 plot.gips

xlim = NULL,
)
Arguments
X Object of a gips class.
type A single character. One of c("heatmap”, "block_heatmap”, "all”, "best”,

"both").

* "heatmap" - Plots a heatmap of the S matrix inside the gips object projected
on the permutation in the gips object.

* "block_heatmap" - Plots a heatmap of diagonally block representation of S.
Non-block entries (equal to 0) are white for better clarity. For more infor-
mation see Block Decomposition - [1], Theorem 1 section in vignette("Theory”,
package = "gips") or in its pkgdown page).

» "all" - Plots the line of a posteriori for all visited states.

* "best" - Plots the line of the biggest a posteriori found over time.

¢ "both" - Plots both lines from "all" and "best".

The default value is NA, which will be changed to "heatmap" for non-optimized

gips objects and to "both" for optimized ones. Using the default produces a

warning. All other arguments are ignored for the type = "heatmap”.
logarithmic_y, logarithmic_x

A boolean. Sets the axis of the plot in logarithmic scale.

color Vector of colors to be used to plot lines.

title_text Text to be in the title of the plot.

xlabel Text to be on the bottom of the plot.

ylabel Text to be on the left of the plot.

show_legend A boolean. Whether or not to show a legend.

ylim Limits of the y axis. When NULL, the minimum and maximum of the log_posteriori_of_gips()
are taken.

x1lim Limits of the x axis. When NULL, the whole optimization process is shown.

Additional arguments passed to stats::heatmap() or other various elements
of the plot.
Value

Returns an invisible NULL.

See Also

e find_MAP() - Usually, the plot.gips() is called on the output of find_MAP().
e project_matrix() - The function used with type = "heatmap”.

* gips() - The constructor of a gips class. The gips object is used as the x parameter.

https://przechoj.github.io/gips/articles/Theory.html

prepare_orthogonal_matrix 19

Examples

require("MASS") # for mvrnorm()

perm_size <- 6
mu <- runif(6, -10, 10) # Assume we don't know the mean
sigma_matrix <- matrix(

data = c(
1.0, 0.8, 0.6, 0.4, 0.6, 0.8,
0.8, 1.0, 0.8, 0.6, 0.4, 0.6,
0.6, 0.8, 1.0, 0.8, 0.6, 0.4,
0.4, 0.6, 0.8, 1.0, 0.8, 0.6,
0.6, 0.4, 0.6, 0.8, 1.0, 0.8,
0.8, 0.6, 0.4, 0.6, 0.8, 1.0

’

),

nrow = perm_size, byrow = TRUE
) # sigma_matrix is a matrix invariant under permutation (1,2,3,4,5,6)
number_of_observations <- 13
Z <- MASS::mvrnorm(number_of_observations, mu = mu, Sigma = sigma_matrix)
S <- cov(Z) # Assume we have to estimate the mean

g <- gips(S, number_of_observations)
if (require("”graphics"”)) {

plot(g, type = "heatmap")
3

g_map <- find_MAP(g, max_iter = 30, show_progress_bar = FALSE, optimizer = "hill_climbing")
if (require("graphics”)) {

plot(g_map, type = "both”, logarithmic_x = TRUE)
3

if (require("”graphics"”)) {
plot(g_map, type = "heatmap”)

3

Now, the output is (most likely) different because the permutation
“g_map[[1]1]1" is (most likely) not an identity permutation.

prepare_orthogonal_matrix
Prepare orthogonal matrix

Description

Calculate orthogonal matrix U_Gamma for decomposition in Theorem 1 from references.

Usage

prepare_orthogonal_matrix(perm, perm_size = NULL, basis = NULL)

https://arxiv.org/abs/2004.03503

20 prepare_orthogonal_matrix

Arguments
perm An object of a gips_permor a permutations: :cycle class.
perm_size Size of a permutation. Required if perm is of a permutations: :cycle class.
basis A matrix with basis vectors in COLUMNS. Identity by default.

Details

Given X - a matrix invariant under the permutation perm. Call Gamma the permutations cyclic
group < perm >= {perm, perm?,...}.

Then, U_Gamma is such an orthogonal matrix, which block-diagonalizes X.

To be more precise, the matrix t(U_Gamma) %*% X %*% U_Gamma has a block-diagonal structure,
which is ensured by Theorem 1 from references

Formula for U_Gamma can be found in Theorem 6 from references.

Value

A square matrix of size perm_size by perm_size with columns from vector elements vl(f) accord-

ing to Theorem 6 from references.

References

Piotr Graczyk, Hideyuki Ishi, Bartosz Kolodziejek, Hélene Massam. "Model selection in the space
of Gaussian models invariant by symmetry." The Annals of Statistics, 50(3) 1747-1774 June 2022.
arXiv link; doi: 10.1214/22A0S2174

See Also

* project_matrix() - A function used in examples to show the properties of prepare_orthogonal_matrix().

* Block Decomposition - [1], Theorem 1 section of vignette("Theory", package = "gips")
or its pkgdown page) - A place to learn more about the math behind the gips package and see
more examples of prepare_orthogonal_matrix().

Examples

gperm <- gips_perm("(1,2,3)(4,5)", 5)
U_Gamma <- prepare_orthogonal_matrix(gperm)

number_of_observations <- 10

X <- matrix(rnorm(5 * number_of_observations), number_of_observations, 5)

S <= cov(X)

X <- project_matrix(S, perm = gperm) # this matrix in invariant under gperm

block_decomposition <- t(U_Gamma) %*% X %x% U_Gamma
round(block_decomposition, 5) # the non-zeros only on diagonal and [1,2] and [2,1]

https://arxiv.org/abs/2004.03503
https://arxiv.org/abs/2004.03503
https://arxiv.org/abs/2004.03503
https://arxiv.org/abs/2004.03503
https://doi.org/10.1214/22-AOS2174
https://przechoj.github.io/gips/articles/Theory.html

print.gips 21

print.gips Printing gips object

Description

Printing function for a gips class.

Usage
S3 method for class 'gips'
print(
X,
digits = Inf,

compare_to_original = TRUE,
log_value = FALSE,
oneline = FALSE,

)
Arguments
X An object of a gips class.
digits The number of digits after the comma for a posteriori to be presented. It can be

negative. By default, Inf. It is passed to base: : round().
compare_to_original
A logical. Whether to print how many times more likely is the current permuta-
tion compared to:
* the identity permutation () (for unoptimized gips object);
* the starting permutation (for optimized gips object).

log_value A logical. Whether to print the value of a log_posteriori_of_gips(). Default
to FALSE.
oneline A logical. Whether to print in one or multiple lines. Default to FALSE.

The additional arguments passed to base: :cat().

Value

Returns an invisible NULL.

See Also

e find_MAP() - The function that makes an optimized gips object out of the unoptimized one.

e compare_posteriories_of_perms() - The function that prints the compared posteriories
between any two permutations, not only compared to the starting one or id.

22

Examples

S <- matrix(c(1, 0.5, 0.5, 2), nrow = 2, byrow = TRUE)
g <- gips(S, 10)
print(g, digits = 4)

project_matrix

print.gips_perm Printing gips_perm object

Description

Printing function for a gips_perm class.

Usage
S3 method for class 'gips_perm'
print(x, ...)
Arguments
X An object of a gips_perm class.
Further arguments passed to permutations: :print.cycle().
Value

Returns its argument invisibly, after printing it.

Examples

g_perm <- gips_perm(permutations::as.cycle(”(5,4)"), 5)
print(g_perm)

project_matrix Project matrix after optimization

Description

After the MAP permutation was found with find_MAP(), use this permutation to approximate the

covariance matrix with larger statistical confidence.

Usage

project_matrix(S, perm, precomputed_equal_indices = NULL)

project_matrix 23

Arguments
S A square matrix to be projected. The covariance estimator. (See the same pa-
rameter in gips() function).
perm A permutation. Generator of a permutation group. Either of a gips_perm or a

permutations: :cycle class.
precomputed_equal_indices
This parameter is for internal use only.

Details

Project matrix on the space of symmetrical matrices invariant by a cyclic group generated by perm.
This implements the formal Definition 3 from references.

When S is the sample covariance matrix (output of cov() function, see examples), then S is the
unbiased estimator of the covariance matrix. However, the maximum likelihood estimator of the
covariance matrix is Sx(n-1)/(n), unless n < p, when the maximum likelihood estimator does
not exist. For more information, see Wikipedia - Estimation of covariance matrices.

The maximum likelihood estimator differs when one knows the covariance matrix is invariant
under some permutation. This estimator will not only be symmetric but also have some values
repeated (see examples and Corollary 12 from references).

The estimator will be invariant under the given permutation. Also, it will need fewer observa-
tions for the maximum likelihood estimator to exist (see Project Matrix - Equation (6) section in
vignette("Theory"”, package = "gips") or in its pkgdown page). For some permutations, even
n = 2 could be enough. The minimal number of observations needed are named n@ and can be
calculated by summary.gips().

For more details, see the Project Matrix - Equation (6) section in vignette("Theory"”, package
="gips") or in its pkgdown page.

Value

Returns the matrix S projected on the space of symmetrical matrices invariant by a cyclic group
generated by perm. See Details for more.

See Also

» Wikipedia - Estimation of covariance matrices

* Project Matrix - Equation (6) section of vignette("Theory”, package = "gips") or its
pkgdown page - A place to learn more about the math behind the gips package and see more
examples of project_matrix().

e find_MAP() - The function that finds the Maximum A Posteriori (MAP) Estimator for a given
gips object. After the MAP Estimator is found, the matrix S can be projected on this permu-
tation, creating the MAP Estimator of the covariance matrix (see examples).

* gips_perm() - Constructor for the perm parameter.

e plot.gips() - For plot(g, type = "heatmap'), the project_matrix() is called (see ex-
amples).

e summary.gips() - Can calculate the n@, the minimal number of observations, so that the
projected matrix will be the MAP estimator of the covariance matrix.

https://arxiv.org/abs/2004.03503
https://en.wikipedia.org/wiki/Estimation_of_covariance_matrices
https://arxiv.org/abs/2004.03503
https://przechoj.github.io/gips/articles/Theory.html
https://przechoj.github.io/gips/articles/Theory.html
https://en.wikipedia.org/wiki/Estimation_of_covariance_matrices
https://przechoj.github.io/gips/articles/Theory.html

24 summary.gips

Examples

p<-6
gperm <- gips_perm(permutations::as.word(c(4, 3, 2, 1, 5)), p) # permutation (1,4)(2,3)(5)(6)

number_of_observations <- 10
X <- matrix(rnorm(p * number_of_observations), number_of_observations, p)
S <- cov(X)
projected_S <- project_matrix(S, perm = gperm)
projected_S
The value in [1,1] is the same as in [4,4]; also, [2,2] and [3,3];
also [1,2] and [4,3]; also, [1,5] and [4,5]; and so on

Plot the projected matrix:
g <- gips(S, number_of_observations, perm = gperm)
plot(g, type = "heatmap”)

Find the MAP Estimator

g_MAP <- find_MAP(g, max_iter = 10, show_progress_bar = FALSE, optimizer = "Metropolis_Hastings")
S_MAP <- project_matrix(S, perm = g_MAP[[1]])

S_MAP

plot(g_MAP, type = "heatmap")

summary.gips Summarizing the gips object

Description

summary method for class "gips".

Usage

S3 method for class 'gips'
summary (object, ...)

S3 method for class 'summary.gips'

print(x, ...)
Arguments
object An object of class "gips"; is usually a result of a find_MAP().
Further arguments passed to or from other methods.
X An object of class "summary.gips" to be printed
Value

The function summary.gips computes and returns a list of summary statistics of the given gips
object. Those are:

summary.gips 25

* For unoptimized gips object:
1. optimized - FALSE
2. start_permutation - the permutation this gips represents

3. start_permutation_log_posteriori - the log of the a posteriori value the start per-
mutation has

4. times_more_likely_than_id - how many more likely the start_permutation is over
the identity permutation, (). It can be a number less than 1, which means the identity
permutation, (), is more likely. Keep in mind this number can be really big and can be
overflowed to Inf

5. n@ - the minimal number of observations needed for existence of the maximum likelihood
estimator (corresponding to a MAP) of the covariance matrix (see C'o and n@ section in
vignette("Theory"”, package = "gips") or in its pkgdown page).

6. S_matrix - the underlying matrix; this is used to calculate the posteriori value

7. number_of_observations - the number of observations that were observed for the S_matrix
to be calculated; this is used to calculate the posteriori value

8. was_mean_estimated - given by the user while creating the gips object:

— TRUE means the S parameter was output of stats: :cov() function

— FALSE means the S parameter was calculated with S = t (X) %*% X / number_of_observations
9. delta, D_matrix - the parameters of the Bayesian method

* For optimized gips object:
1. optimized - TRUE

2. found_permutation - the permutation this gips represents; the visited permutation with
the biggest a posteriori value

3. found_permutation_log_posteriori - the log of the a posteriori value the found per-
mutation have

4. start_permutation - the original permutation this gips represented before optimiza-
tion; the first visited permutation

5. start_permutation_log_posteriori - the log of the a posteriori value the start per-
mutation has

6. times_more_likely_than_start - how many more likely the found_permutation is
over the start_permutation. It cannot be a number less than 1. Keep in mind this
number can be really big and can be overflowed to Inf

7. n@ - the minimal number of observations needed for existence of the maximum likelihood
estimator (corresponding to a MAP) of the covariance matrix (see C'o and n@ section in
vignette("Theory"”, package = "gips") or in its pkgdown page).

8. S_matrix - the underlying matrix; this is used to calculate the posteriori value

9. number_of_observations - the number of observations that were observed for the S_matrix
to be calculated; this is used to calculate the posteriori value

10. was_mean_estimated - given by the user while creating the gips object:

— TRUE means the S parameter was output of stats: :cov() function

— FALSE means the S parameter was calculated with S = t(X) %*% X / number_of_observations
11. delta, D_matrix - the parameters of the Bayesian method

12. optimization_algorithm_used - all used optimization algorithms in order (one could
start optimization with "MH", and then do an "HC")

https://przechoj.github.io/gips/articles/Theory.html
https://przechoj.github.io/gips/articles/Theory.html

26

13.
14.

15.

16.

17.

summary.gips

did_converge - a boolean, did the last used algorithm converge

number_of_log_posteriori_calls - how many times was the log_posteriori_of_gips()
function called during the optimization

whole_optimization_time - how long was the optimization process; the sum of all
optimization times (when there were multiple)

log_posteriori_calls_after_best - how many times was the log_posteriori_of_gips()
function called after the found_permutation; in other words, how long ago could the op-
timization be stopped and have the same result; if this value is small, consider running
find_MAP() one more time with optimizer = "continue”. For optimizer = "BF", it is

NULL

acceptance_rate - only interesting for optimizer = "MH"; how often was the algorithm
accepting the change of permutation in an iteration

print.summary.gips returns an invisible NULL.

Methods (by generic)

e print(summary.gips): Printing method for class "summary.gips". Prints every interesting
information in a pleasant, human readable form

See Also

e find_MAP() - Usually, the summary.gips() is called on the output of find_MAP().

* log_posteriori_of_gips() - The function that calculates the likelihood of a permutation.

* project_matrix() - The function that can project the known matrix of the found permuta-
tions space.

Examples

require("MASS") # for mvrnorm()

perm_size <- 6
mu <- runif(6, -10, 10) # Assume we don't know the mean
sigma_matrix <- matrix(

dat

1.

),

nro

(SIS IS B EEN

a =
)
’
’
)

’

[e ol N e e AN N

’

W =

c(
0.

’ ’ ’

A OO OO S 0O
[SENSEESENSEN SN
[SEESEN SIS IS BN
0 S 0O~ O
2SS IS IS

(SIS IS RS
o A~ O 0O
[SENSENSEEIN IS
[2Be ISR e I o) IIF N
S 0O~ O ®

’ ’ ’

perm_size, byrow = TRUE

) # sigma_matrix is a matrix invariant under permutation (1,2,3,4,5,6)
number_of_observations <- 13

Z <- MASS::mvrnorm(number_of_observations, mu = mu, Sigma = sigma_matrix)
S <- cov(Z) # Assume we have to estimate the mean

g <- gips(S, number_of_observations)

summary.gips 27

g_map <- find_MAP(g, max_iter = 10, show_progress_bar = FALSE, optimizer = "Metropolis_Hastings")
unclass(summary(g_map))

g_map2 <- find_MAP(g, max_iter = 10, show_progress_bar = FALSE, optimizer = "hill_climbing")
summary (g_map2)

#
S <- matrix(c(1, 0.5, 0.5, 2), nrow = 2, byrow = TRUE)
g <- gips(S, 10)

print(summary(g))

Index

as.character.gips_perm, 2
as.character.gips_perm(), 15

base::cat(), 21
base::round(), 21

calculate_gamma_function, 3
calculate_gamma_function(), 11, 16
compare_log_posteriories_of_perms
(compare_posteriories_of_perms),
4
compare_posteriories_of_perms, 4
compare_posteriories_of_perms(), 2/

find_MAP, 6
find_MAP(), 9, 10, 12, 14, 16, 18, 21-24, 26
forget_perms, 9

forget_perms(), 8

get_probabilities_from_gips, 10
get_probabilities_from_gips(),7, §
get_structure_constants, 11
get_structure_constants(), 3
gips, 12

gips(), 5,8, 15,18, 23

gips_perm, 14

gips_perm(), 4, 14,23

log_posteriori_of_gips, 16
log_posteriori_of_gips(), 3,8, 11,18, 21,
26

new_gips (gips), 12
new_gips_perm (gips_perm), 14

permutations::as.character.cycle(), 2,
3

permutations::permutation(), 13, 15

permutations::print.cycle(), 22

plot.gips, 17

plot.gips(), 8, 13,23

28

prepare_orthogonal_matrix, 19
print.gips, 21

print.gips(), 5, 13
print.gips_perm, 22
print.gips_perm(), 15
print.summary.gips (summary.gips), 24
project_matrix, 22
project_matrix(), I8, 20, 26

stats::cov(), 13, 14,25
stats::heatmap(), I8
summary.gips, 24
summary.gips(), 5,8, 13,23

validate_gips (gips), 12
validate_gips_perm(gips_perm), 14

	as.character.gips_perm
	calculate_gamma_function
	compare_posteriories_of_perms
	find_MAP
	forget_perms
	get_probabilities_from_gips
	get_structure_constants
	gips
	gips_perm
	log_posteriori_of_gips
	plot.gips
	prepare_orthogonal_matrix
	print.gips
	print.gips_perm
	project_matrix
	summary.gips
	Index

