Package ‘TPLSr’

April 8, 2021
Type Package
Title Thresholded Partial Least Squares Model for Neuroimaging Data
Version 1.0.3

Description Uses thresholded partial least squares algorithm to create a regression or classifica-
tion model. For more information, see Lee, Brad-
low, and Kable <doi:10.1101/2021.02.09.430524>.

License GPL-3

Depends R (>=3.5), plotly (>=4.9.2.1)
Encoding UTF-8

LazyData true

NeedsCompilation no

RoxygenNote 7.1.1

LazyDataCompression xz

Author Sangil Lee [aut, cre]

Maintainer Sangil Lee <sangillee3rd@gmail.com>
Repository CRAN

Date/Publication 2021-04-08 21:40:11 UTC

R topics documented:

evalTuningParam L
makePredictoro
plotTuningSurface
TPLS . . e
TPLSdat
TPLSpredict o e e e e e e
TPLS _CV . . o e s

Index

2 evalTuningParam

evalTuningParam Evaluate TPLS tuning parameters using cross validation

Description

Evaluate TPLS tuning parameters using cross validation

Usage
evalTuningParam(
TPLScvmdl,
type = c("pearson”, "spearman”, "AUC"),
X,
Y,
compvec,
threshvec,
subfold = NULL
)
Arguments
TPLScvmdl TPLS_cv model created from TPLS_cv
type Cross validation performance measure type. One of ’pearson’, ’spearman’, or
"AUC’
X The SAME X that was used to create the TPLScvmdl. If it’s not the same, the
function may not work or the results will be completely off
Y The SAME Y that was used to create the TPLScvmdl.
compvec Vector containing the number of components you want to assess CV perfor-
mance for (e.g., c(3,4,5) will provide CV performance of 3, 4, and 5 component
TPLS model at various thresholds)
threshvec Vector containing the thresholding level betweeon 0 and 1 you want to assess

CV performance for (e.g., seq(0,1,0.1) will provide CV performance of TPLS
models at thresholds of 0, 0.1, 0.2, ... ,1)

subfold Optional vector containing smaller data division within folds. For example, if
the cross-validation was done at the subject level, with each testing fold being a
subject, subfold can be the run number of the scan of each person. This allows
for calculation of average CV metric at the run level instead of at the subject
level.

Value
A evalTuningParam object that contains the following attributes.

* type: Cross validation performance measure type, as specified in the input

* threshval: Same as the input threshvec

makePredictor 3

* compval: Same as the input compvec

* perfmat: Performance measure 3D matrix: length(compvec)-by-length(threshvec)-by-numfold
* perf_best: Best CV performance out of all combinations of compvec and threshvec

* compval_best: Number of components that gave the best performance (i.e., perf_best)

* threshval_best: Threshold level that gave the best performance (i.e., perf_best)

* perf_1se : Performance of the most parsimonious model (least number of coefficients) that
is within 1 standard error of perf_best.

e compval_1se : Number of components that gave perf_1se

* threshval_1se : Threshold level that gave perf_1se

Examples

see examples under TPLS_cv as you'd need a TPLS_cv object to run this function

makePredictor Extracts a predictor (betamap and intercept) from a TPLS model at a
given number of components and given threshold value

Description
Extracts a predictor (betamap and intercept) from a TPLS model at a given number of components
and given threshold value

Usage
makePredictor(TPLSmdl, compval, threshval)

Arguments
TPLSmd1 A TPLS object created from using function TPLS
compval The number of components you want in your model. Providing a vector will
provide multiple betamaps (e.g., ¢(3,4,5) will provide three betamaps each with
3,4, and 5 PLS components)
threshval Threshold number between 0 and 1 (inclusive) for thresholding the betamap.
This must be a scalar.
Value

* bias: The intercept of the extracted model. Vector of intercepts if compval is a vector.

* betamap: Column vector of betamap. Matrix of betamaps if compval is a vector.

Examples

See examples for TPLS

4 TPLS

plotTuningSurface Plots the tuning surface of TPLS

Description

Plots the tuning surface of TPLS

Usage

plotTuningSurface(object)

Arguments

object : evalTuningParam object

Examples

See examples for TPLS_cv

TPLS Fit a TPLS model to data

Description

Fit a TPLS model to data

Usage

TPLS(X, Y, NComp = 50, W =0, nmc = 0)

Arguments

X n-by-v data matrix of real numbers. Rows correspond to observations (trials)
and columns to variables (e.g., fMRI voxels).

Y n-by-1 Vector of real numbers. Can be binary (0/1) for classification model, or
can be continuous.

NComp Maximum number of partial least squares component you want to use. Default
is 50, and this is on the safe side for fMRI.

W n-by-1 vector of positive observation weights.

nmc A switch to skip mean-centering. Default is off (0). Only turn it on (1) when

the data is already mean-centered and you want to save memory space by not
creating another copy of the data for mean-centering.

TPLS 5

Value

A TPLS object that contains the following attributes. Most of the time, you won’t need to access
the attributes.

* NComp: The number of components you specified in the input

* W: Normalized version of the observation weights (i.e., they sum to 1)

e MtrainX: Column mean of X. Weighted mean if W is given.

e MtrainY: Mean of Y. Weighted mean if W is given.

» scoreCorr: Correlation between Y and each PLS component. Weighted correlation if W is
given.

* pctVar: Proportion of variance of Y that each component explains.

* betamap: v-by-NComp matrix of TPLS coefficients for each of the v variables, provided at
each model with NComp components.

* threshmap : v-by-NComp matrix of TPLS threshold values (0~1) for each of the v variables,
provided at each model with NComp components.

Examples

Fit example TPLS data with a TPLS model

Load example data (included with package).
X = TPLSdat$X

Y = TPLSdat$Y

Fit the model, with default options (50 components, no observation weights)
TPLSmd1l <- TPLS(X,Y)

Make in-sample prediction at threshold of 0.5 and at all possible components
pred <- TPLSpredict(TPLSmdl,1:50,0.5,X)

Look at the correlation between prediction and Y.

This is in-sample prediction. Ergo, the model with most components will have the highest
predictive correlation. In practice, you should choose the number of components and

threshold using cross-validation. See example for TPLS_cv

cor(Y,pred)

Extract the predictor for a model with 25 PLS components and threshold at 0.7 (just cuz)
betamap <- makePredictor(TPLSmdl,25,0.5)

This is the intercept
betamap$bias

These are the coefficients for the original variables
betamap$betamap

6 TPLSpredict

TPLSdat Sample participant data from a left-right button press task

Description

A dataset containing five sample participant’s binary button presses inside the scanner (left/right).

Usage

TPLSdat

Format

A data frame with following variables

X Brain image single trial coefficients. N-by-v matrix

Y Left =0, Right = 1, binary indicator of participant choice
subj Subject number (i.e., 1, 2, 3)

run Run number (ie., 1,2,3,4,5,6,7,8)

mask Binary 3D brain image that indexes where the variables in X came from.

Source

Kable, J. W., Caulfield, M. K., Falcone, M., McConnell, M., Bernardo, L., Parthasarathi, T., ... &
Diefenbach, P. (2017). No effect of commercial cognitive training on brain activity, choice behavior,
or cognitive performance. Journal of Neuroscience, 37(31), 7390-7402.

TPLSpredict Make predictions about given data testX by using an extracted
TPLSmdl with compval components and threshval threshold.

Description

Make predictions about given data testX by using an extracted TPLSmdl with compval components
and threshval threshold.

Usage

TPLSpredict(TPLSmdl, compval, threshval, testX)

TPLS cv

Arguments

TPLSmd1

compval

threshval

testX

Value

A TPLS object created from using function TPLS

The number of components you want in your model. Providing a vector will
provide multiple predictions (e.g., ¢(3,4,5) will provide three prediction columns
each with 3, 4, and 5 PLS components)

Threshold number between 0 and 1 (inclusive) for thresholding the betamap.
This must be a scalar.

Data that you want to predict the Y of

* score: Column vector of prediction scores. Matrix of scores if compval is a vector.

Examples

See examples for TPLS

TPLS_cv

Fit a TPLS model to data with cross validation

Description

Fit a TPLS model to data with cross validation

Usage

TPLS_cv(X, Y, foldid, NComp = 50, W = @)

Arguments

X

foldid

NComp

n-by-v data matrix of real numbers. Rows correspond to observations (trials)
and columns to variables (e.g., fMRI voxels).

n-by-1 Vector of real numbers. Can be binary (0/1) for classification model, or
can be continuous.

A vector of values between 1 and number of folds identifying what fold each
observation is in.

Maximum number of partial least squares component you want to use. Default
is 50, and this is on the safe side for fMRI.

n-by-1 vector of positive observation weights.

8 TPLS cv

Value

A TPLS_cv object that contains the following attributes. Most of the time, you won’t need to access
the attributes.

* NComp: The number of components you specified in the input
¢ numfold: Total number of cross-validation folds
* testfold: A vector indice that should be the same as foldid, if it was provided accurately.

e cvMdls : A vector of TPLS models, one for each fold.

Examples

Fit example TPLS data with a TPLS model using cross-validation

Load example data (included with package).

X = TPLSdat$X # single trial brain image of subjects pressing left/right buttons

Y = TPLSdat$Y # binary variable that is 1 if right button is pushed, @ if left button is pushed
subj = TPLSdat$subj # 1, 2, or 3, depending on who the subject is

run = TPLSdat$run # 1, 2, ..., 8, depending on the scan run of each subject

Fit the model, using 3-fold cross-validation at the subject level
(i.e., train on two subjects, test on 1, repeat three times)
TPLScvmdl <- TPLS_cv(X,Y,subj)

Evaluate the tuning parameters via cross-validation.

We'll test 1~50 components and thresholding from @ to 1 in 0.05 increments.

Also include subfold information.

This allows for calculation of correlation at the run-level instead of at the subject level.
cvstats <- evalTuningParam(TPLScvmdl, "pearson”,X,Y,1:50,seq(@,1,0.05),subfold=run)

plot the tuning parameter surface.

It'1ll show the point of best performance (and also point of 1SE performance).
The plot is interactive, so spin it around

plotTuningSurface(cvstats)

These are the tuning parameters of best performance
cvstats$compval _best # 8 components
cvstats$threshval_best # 0.1 thresholding (leave only 10% of all voxels)

Now build a new TPLS model, using all the data, using the best tuning parameters
TPLSmd1l <- TPLS(X,Y,NComp=cvstats$compval_best)

Extract the prediction betamap that gave the best CV performance
betamap <- makePredictor(TPLSmdl,cvstats$compval_best,cvstats$threshval_best)

This is the intercept
betamap$bias

These are the coefficients for the original variables
betamap$betamap

Project the betamap into brain-space so that we can look at it.
mask = TPLSdat$mask # mask 3D image of the brain from which X was extracted from

TPLS_cv 9

brainimg = mask*1 # make a copy

brainimg[mask] = betamap$betamap # put the betamap into the brain image

figl <- plot_ly(z = brainimg[,15,], type = "heatmap”) # looking at a slice of the brain image
fig2 <- plot_ly(z = 1*mask[,15,], type = "heatmap”) # a slice of the brain mask for reference
fig <- subplot(figl, fig2)

fig

Figures show a coronal section of the brain (but flipped right 90 degrees).

on the left, you should see the bilateral motor cortex coefficients with opposing signs.
This is just a simple visual demonstration. You should use other packages to output

coefficients into a nifti file and view them in a separate viewer.

Index

x datasets
TPLSdat, 6

evalTuningParam, 2
makePredictor, 3
plotTuningSurface, 4

TPLS, 4
TPLS_cv, 7
TPLSdat, 6
TPLSpredict, 6

10

	evalTuningParam
	makePredictor
	plotTuningSurface
	TPLS
	TPLSdat
	TPLSpredict
	TPLS_cv
	Index

